Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(5): 1889-1904, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37382246

RESUMO

PURPOSE: Arterial spin labeling (ASL) acquisitions at multiple post-labeling delays may provide more accurate quantification of cerebral blood flow (CBF), by fitting appropriate kinetic models and simultaneously estimating relevant parameters such as the arterial transit time (ATT) and arterial cerebral blood volume (aCBV). We evaluate the effects of denoising strategies on model fitting and parameter estimation when accounting for the dispersion of the label bolus through the vasculature in cerebrovascular disease. METHODS: We analyzed multi-delay ASL data from 17 cerebral small vessel disease patients (50 ± 9 y) and 13 healthy controls (52 ± 8 y), by fitting an extended kinetic model with or without bolus dispersion. We considered two denoising strategies: removal of structured noise sources by independent component analysis (ICA) of the control-label image timeseries; and averaging the repetitions of the control-label images prior to model fitting. RESULTS: Modeling bolus dispersion improved estimation precision and impacted parameter values, but these effects strongly depended on whether repetitions were averaged before model fitting. In general, repetition averaging improved model fitting but adversely affected parameter values, particularly CBF and aCBV near arterial locations in patients. This suggests that using all repetitions allows better noise estimation at the earlier delays. In contrast, ICA denoising improved model fitting and estimation precision while leaving parameter values unaffected. CONCLUSION: Our results support the use of ICA denoising to improve model fitting to multi-delay ASL and suggest that using all control-label repetitions improves the estimation of macrovascular signal contributions and hence perfusion quantification near arterial locations. This is important when modeling flow dispersion in cerebrovascular pathology.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Marcadores de Spin , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Artérias , Circulação Cerebrovascular/fisiologia , Imagem de Perfusão/métodos
2.
J Neural Eng ; 18(3): 036016, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724235

RESUMO

OBJECTIVE: In ischemic stroke, treatments to protect neurons from irreversible damage are urgently needed. Studies in animal models have shown that neuroprotective treatments targeting neuronal silencing improve brain recovery, but in clinical trials none of these were effective in patients. This failure of translation poses doubts on the real efficacy of treatments tested and on the validity of animal models for human stroke. Here, we established a human neuronal model of the ischemic penumbra by using human induced pluripotent stem cells and we provided an in-depth characterization of neuronal responses to hypoxia and treatment strategies at the network level. APPROACH: We generated neurons from induced pluripotent stem cells derived from healthy donor and we cultured them on micro-electrode arrays. We measured the electrophysiological activity of human neuronal networks under controlled hypoxic conditions. We tested the effect of different treatment strategies on neuronal network functionality. MAIN RESULTS: Human neuronal networks are vulnerable to hypoxia reflected by a decrease in activity and synchronicity under low oxygen conditions. We observe that full, partial or absent recovery depend on the timing of re-oxygenation and we provide a critical time threshold that, if crossed, is associated with irreversible impairments. We found that hypoxic preconditioning improves resistance to a second hypoxic insult. Finally, in contrast to previously tested, ineffective treatments, we show that stimulatory treatments counteracting neuronal silencing during hypoxia, such as optogenetic stimulation, are neuroprotective. SIGNIFICANCE: We presented a human neuronal model of the ischemic penumbra and we provided insights that may offer the basis for novel therapeutic approaches for patients after stroke. The use of human neurons might improve drug discovery and translation of findings to patients and might open new perspectives for personalized investigations.


Assuntos
Isquemia Encefálica , Células-Tronco Pluripotentes Induzidas , Fármacos Neuroprotetores , Animais , Isquemia Encefálica/terapia , Humanos , Hipóxia , Neurônios
3.
Stud Health Technol Inform ; 261: 313-316, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156137

RESUMO

The understanding of the neurophysiological processes that occur in the areas that surround the core of a brain infarct is crucial for the creation of new therapies and treatments to improve neuronal recovery. The present study aims to demonstrate that both rodent and human neuronal networks lose their activity under low oxygen conditions and that electrical stimulation can increase the probability of recovery. Hypoxia was induced in rodent and human neurons and the effects of electrical stimulation were assessed in the rat cultures. The results obtained show that neuronal activation, in the form of electrical stimulation, has the potential to maintain the networks at higher levels of activity and, therefore, to improve cell survival. This study will open the way for new treatment strategies based on brain-stimulation to enhance neuronal recovery and will be of large relevance for patients, families, and society.


Assuntos
Isquemia Encefálica , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/reabilitação , Humanos , Hipóxia , Neurônios , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA