Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Eur Heart J ; 44(22): 2009-2025, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-36916707

RESUMO

BACKGROUND AND AIMS: Ghrelin is an endogenous appetite-stimulating peptide hormone with potential cardiovascular benefits. Effects of acylated (activated) ghrelin were assessed in patients with heart failure and reduced ejection fraction (HFrEF) and in ex vivo mouse cardiomyocytes. METHODS AND RESULTS: In a randomized placebo-controlled double-blind trial, 31 patients with chronic HFrEF were randomized to synthetic human acyl ghrelin (0.1 µg/kg/min) or placebo intravenously over 120 min. The primary outcome was change in cardiac output (CO). Isolated mouse cardiomyocytes were treated with acyl ghrelin and fractional shortening and calcium transients were assessed. Acyl ghrelin but not placebo increased cardiac output (acyl ghrelin: 4.08 ± 1.15 to 5.23 ± 1.98 L/min; placebo: 4.26 ± 1.23 to 4.11 ± 1.99 L/min, P < 0.001). Acyl ghrelin caused a significant increase in stroke volume and nominal increases in left ventricular ejection fraction and segmental longitudinal strain and tricuspid annular plane systolic excursion. There were no effects on blood pressure, arrhythmias, or ischaemia. Heart rate decreased nominally (acyl ghrelin: 71 ± 11 to 67 ± 11 b.p.m.; placebo 69 ± 8 to 68 ± 10 b.p.m.). In cardiomyocytes, acyl ghrelin increased fractional shortening, did not affect cellular Ca2+ transients, and reduced troponin I phosphorylation. The increase in fractional shortening and reduction in troponin I phosphorylation was blocked by the acyl ghrelin antagonist D-Lys 3. CONCLUSION: In patients with HFrEF, acyl ghrelin increased cardiac output without causing hypotension, tachycardia, arrhythmia, or ischaemia. In isolated cardiomyocytes, acyl ghrelin increased contractility independently of preload and afterload and without Ca2+ mobilization, which may explain the lack of clinical side effects. Ghrelin treatment should be explored in additional randomized trials. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05277415.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Grelina/farmacologia , Grelina/uso terapêutico , Volume Sistólico , Função Ventricular Esquerda , Troponina I/metabolismo
2.
FASEB J ; 35(12): e22010, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34724256

RESUMO

The hypoxia-inducible nuclear-encoded mitochondrial protein NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) has been demonstrated to decrease oxidative phosphorylation and production of reactive oxygen species in neonatal cardiomyocytes, brain tissue and hypoxic domains of cancer cells. Prolonged local hypoxia can negatively affect skeletal muscle size and tissue oxidative capacity. Although skeletal muscle is a mitochondrial rich, oxygen sensitive tissue, the role of NDUFA4L2 in skeletal muscle has not previously been investigated. Here we ectopically expressed NDUFA4L2 in mouse skeletal muscles using adenovirus-mediated expression and in vivo electroporation. Moreover, femoral artery ligation (FAL) was used as a model of peripheral vascular disease to induce hind limb ischemia and muscle damage. Ectopic NDUFA4L2 expression resulted in reduced mitochondrial respiration and reactive oxygen species followed by lowered AMP, ADP, ATP, and NAD+ levels without affecting the overall protein content of the mitochondrial electron transport chain. Furthermore, ectopically expressed NDUFA4L2 caused a ~20% reduction in muscle mass that resulted in weaker muscles. The loss of muscle mass was associated with increased gene expression of atrogenes MurF1 and Mul1, and apoptotic genes caspase 3 and Bax. Finally, we showed that NDUFA4L2 was induced by FAL and that the Ndufa4l2 mRNA expression correlated with the reduced capacity of the muscle to generate force after the ischemic insult. These results show, for the first time, that mitochondrial NDUFA4L2 is a novel regulator of skeletal muscle mass and force. Specifically, induced NDUFA4L2 reduces mitochondrial activity leading to lower levels of important intramuscular metabolites, including adenine nucleotides and NAD+ , which are hallmarks of mitochondrial dysfunction and hence shows that dysfunctional mitochondrial activity may drive muscle wasting.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Hipóxia/fisiopatologia , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Animais , Proliferação de Células , Complexo I de Transporte de Elétrons/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Espécies Reativas de Oxigênio
3.
Circulation ; 131(24): 2120-30, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25995315

RESUMO

BACKGROUND: Whether biomechanical force on the heart can induce exosome secretion to modulate cardiovascular function is not known. We investigated the secretion and activity of exosomes containing a key receptor in cardiovascular function, the angiotensin II type I receptor (AT1R). METHODS AND RESULTS: Exosomes containing AT1Rs were isolated from the media overlying AT1R-overexpressing cells exposed to osmotic stretch and from sera of mice undergoing cardiac pressure overload. The presence of AT1Rs in exosomes was confirmed by both electron microscopy and radioligand receptor binding assays and shown to require ß-arrestin2, a multifunctional adaptor protein essential for receptor trafficking. We show that functional AT1Rs are transferred via exosomes in an in vitro model of cellular stretch. Using mice with global and cardiomyocyte conditional deletion of ß-arrestin2, we show that under conditions of in vivo pressure overload the cellular source of the exocytosis of exosomes containing AT1R is the cardiomyocyte. Exogenously administered AT1R-enriched exosomes target cardiomyocytes, skeletal myocytes, and mesenteric resistance vessels and are sufficient to confer blood pressure responsiveness to angiotensin II infusion in AT1R knockout mice. CONCLUSIONS: AT1R-enriched exosomes are released from the heart under conditions of in vivo cellular stress to likely modulate vascular responses to neurohormonal stimulation. In the context of the whole organism, the concept of G protein-coupled receptor trafficking should consider circulating exosomes as part of the reservoir of functional AT1Rs.


Assuntos
Exossomos/química , Miócitos Cardíacos/química , Receptor Tipo 1 de Angiotensina/sangue , Estresse Mecânico , Animais , Arrestinas/deficiência , Arrestinas/genética , Arrestinas/fisiologia , Pressão Sanguínea , Constrição , Exossomos/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Células Musculares/metabolismo , Miócitos Cardíacos/ultraestrutura , Pressão Osmótica , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ensaio Radioligante , Receptor Tipo 1 de Angiotensina/deficiência , Receptor Tipo 1 de Angiotensina/genética , Resistência Vascular , beta-Arrestinas
4.
Basic Res Cardiol ; 111(3): 34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27071401

RESUMO

The inorganic anion nitrate (NO3 (-)), which is naturally enriched in certain vegetables (e.g., spinach and beetroot), has emerged as a dietary component that can regulate diverse bodily functions, including blood pressure, mitochondrial efficiency, and skeletal muscle force. It is not known if dietary nitrate improves cardiac contractility. To test this, mice were supplemented for 1-2 weeks with sodium nitrate in the drinking water at a dose similar to a green diet. The hearts from nitrate-treated mice showed increased left ventricular pressure and peak rate of pressure development as measured with the Langendorff heart technique. Cardiomyocytes from hearts of nitrate-treated and control animals were incubated with the fluorescent indicator Fluo-3 to measure cytoplasmic free [Ca(2+)] and fractional shortening. Cardiomyocytes from nitrate-treated mice displayed increased fractional shortening, which was linked to larger Ca(2+) transients. Moreover, nitrate hearts displayed increased protein expression of the L-type Ca(2+) channel/dihydropyridine receptor and peak L-type Ca(2+) channel currents. The nitrate-treated hearts displayed increased concentration of cAMP but unchanged levels of cGMP compared with controls. These findings provide the first evidence that dietary nitrate can affect the expression of important Ca(2+) handling proteins in the heart, resulting in increased cardiomyocyte Ca(2+) signaling and improved left ventricular contractile function. Our observation shows that dietary nitrate impacts cardiac function and adds understanding to inorganic nitrate as a physiological modulator.


Assuntos
Sinalização do Cálcio/fisiologia , Coração/efeitos dos fármacos , Coração/fisiologia , Contração Miocárdica/efeitos dos fármacos , Nitratos/farmacologia , Animais , Western Blotting , Dieta , Preparação de Coração Isolado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp
5.
Circ Res ; 114(5): 833-44, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24334028

RESUMO

RATIONALE: MicroRNAs (miRs) are small, noncoding RNAs that function to post-transcriptionally regulate gene expression. First transcribed as long primary miR transcripts (pri-miRs), they are enzymatically processed in the nucleus by Drosha into hairpin intermediate miRs (pre-miRs) and further processed in the cytoplasm by Dicer into mature miRs where they regulate cellular processes after activation by a variety of signals such as those stimulated by ß-adrenergic receptors (ßARs). Initially discovered to desensitize ßAR signaling, ß-arrestins are now appreciated to transduce multiple effector pathways independent of G-protein-mediated second messenger accumulation, a concept known as biased signaling. We previously showed that the ß-arrestin-biased ßAR agonist, carvedilol, activates cellular pathways in the heart. OBJECTIVE: Here, we tested whether carvedilol could activate ß-arrestin-mediated miR maturation, thereby providing a novel potential mechanism for its cardioprotective effects. METHODS AND RESULTS: In human cells and mouse hearts, carvedilol upregulates a subset of mature and pre-miRs, but not their pri-miRs, in ß1AR-, G-protein-coupled receptor kinase 5/6-, and ß-arrestin1-dependent manner. Mechanistically, ß-arrestin1 regulates miR processing by forming a nuclear complex with hnRNPA1 and Drosha on pri-miRs. CONCLUSIONS: Our findings indicate a novel function for ß1AR-mediated ß-arrestin1 signaling activated by carvedilol in miR biogenesis, which may be linked, in part, to its mechanism for cell survival.


Assuntos
Arrestinas/metabolismo , MicroRNAs/genética , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais/fisiologia , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Arrestinas/genética , Carbazóis/farmacologia , Carvedilol , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Propanolaminas/farmacologia , Processamento Pós-Transcricional do RNA/fisiologia , Receptores Adrenérgicos beta 1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , beta-Arrestinas
6.
Circ Res ; 115(2): 273-83, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24807785

RESUMO

RATIONALE: The sympathetic nervous system plays a fundamental role in the regulation of myocardial function. During chronic pressure overload, overactivation of the sympathetic nervous system induces the release of catecholamines, which activate ß-adrenergic receptors in cardiomyocytes and lead to increased heart rate and cardiac contractility. However, chronic stimulation of ß-adrenergic receptors leads to impaired cardiac function, and ß-blockers are widely used as therapeutic agents for the treatment of cardiac disease. MicroRNA-133 (miR-133) is highly expressed in the myocardium and is involved in controlling cardiac function through regulation of messenger RNA translation/stability. OBJECTIVE: To determine whether miR-133 affects ß-adrenergic receptor signaling during progression to heart failure. METHODS AND RESULTS: Based on bioinformatic analysis, ß1-adrenergic receptor (ß1AR) and other components of the ß1AR signal transduction cascade, including adenylate cyclase VI and the catalytic subunit of the cAMP-dependent protein kinase A, were predicted as direct targets of miR-133 and subsequently validated by experimental studies. Consistently, cAMP accumulation and activation of downstream targets were repressed by miR-133 overexpression in both neonatal and adult cardiomyocytes following selective ß1AR stimulation. Furthermore, gain-of-function and loss-of-function studies of miR-133 revealed its role in counteracting the deleterious apoptotic effects caused by chronic ß1AR stimulation. This was confirmed in vivo using a novel cardiac-specific TetON-miR-133 inducible transgenic mouse model. When subjected to transaortic constriction, TetON-miR-133 inducible transgenic mice maintained cardiac performance and showed attenuated apoptosis and reduced fibrosis compared with control mice. CONCLUSIONS: miR-133 controls multiple components of the ß1AR transduction cascade and is cardioprotective during heart failure.


Assuntos
AMP Cíclico/fisiologia , MicroRNAs/fisiologia , Miócitos Cardíacos/fisiologia , Receptores Adrenérgicos beta 1/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Regiões 3' não Traduzidas/fisiologia , Adenilil Ciclases/fisiologia , Animais , Apoptose , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Masculino , Metoprolol/farmacologia , Metoprolol/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética
7.
ESC Heart Fail ; 11(1): 601-605, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030138

RESUMO

AIM: Acyl ghrelin increases cardiac output (CO) in heart failure with reduced ejection fraction (HFrEF). This could impair the right ventricular-pulmonary arterial coupling (RVPAC), both through an increased venous return and right ventricular afterload. We aim to investigate if acyl ghrelin increases CO with or without worsening the right-sided haemodynamics in HFrEF assessed by RVPAC. METHODS AND RESULTS: The Karolinska Acyl ghrelin Trial was a randomized double-blind placebo-controlled trial of acyl ghrelin versus placebo (120-min intravenous infusion) in HFrEF. RVPAC was assessed echocardiographically at baseline and 120 min. ANOVA was used for difference in change between acyl ghrelin versus placebo, adjusted for baseline values. Of the 30 randomized patients, 22 had available RVPAC (acyl ghrelin n = 12, placebo n = 10). Despite a 15% increase in CO in the acyl ghrelin group (from 4.0 (3.5-4.6) to 4.6 (3.9-6.1) L/min, P = 0.003), RVPAC remained unchanged; 5.9 (5.3-7.6) to 6.3 (4.8-7.5) mm·(m/s)-1 , P = 0.372, while RVPAC was reduced in the placebo group, 5.2 (4.3-6.4) to 4.8 (4.2-5.8) mm·(m/s)-1 , P = 0.035. Comparing change between groups, CO increased in the acyl ghrelin group versus placebo (P = 0.036) while RVPAC and the right ventricular pressure gradient remained unchanged. CONCLUSION: Treatment with acyl ghrelin increases CO while preserving or even improving RVPAC in HFrEF, possibly due to increased contractility, reduced PVR and/or reduced left sided filling pressures. These potential effects strengthen the role of acyl ghrelin therapy in HFrEF with right ventricular failure.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Humanos , Volume Sistólico , Insuficiência Cardíaca/tratamento farmacológico , Grelina/farmacologia , Grelina/uso terapêutico , Débito Cardíaco
8.
Apoptosis ; 18(10): 1252-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857453

RESUMO

The human prothymosin alpha (PTα) gene encodes a 12.5 kDa highly acidic nuclear protein that is widely expressed in mammalian tissues including the heart and importantly, is detectable also in blood serum. During apoptosis or necrosis, PTα changes its nuclear localization and is able to exert an important cytoprotective effect. Since the role of PTα in the heart has never been evaluated, the aim of the present study was to investigate the effects of PTα on cardiomyocytes during ischemic injury. Our data show that seven after myocardial infarction (MI), PTα expression levels are significantly increased both in blood serum and in cardiac tissue, and notably we observe that PTα translocates from the nuclei to cytoplasm and plasma membrane of cardiomyocytes following MI. Furthermore, in vitro experiments in cardiomyocytes, confirm that after 6 h of simulated ischemia (SI), PTα protein levels are upregulated compared to normoxic cells. Importantly, treatment of cardiomyocytes with a recombinant PTα (rPTα), during SI results in a significant decrease in the apoptotic response and in a robust increase in cell survival. Moreover, these effects are accompanied to a significant preservation of the activated levels of the anti-apoptotic serine-threonine kinase Akt. Consistent with our in vitro observation, rPTα-treated MI mice exhibit a strong reduction in infarct size at 24 h, compared to the MI control group and at the molecular level, PTα treatment induces activation of Akt. The present study provides for the first time the demonstration that PTα offers cardioprotection against ischemic injury by an Akt-dependent mechanism.


Assuntos
Apoptose , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Timosina/análogos & derivados , Animais , Hipóxia Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Precursores de Proteínas/farmacologia , Timosina/metabolismo , Timosina/farmacologia
9.
Front Cardiovasc Med ; 10: 1228789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608817

RESUMO

Cardiovascular diseases (CVD) are still the leading cause of death worldwide. The improved survival of patients with comorbidities such as type 2 diabetes, hypertension, obesity together with the extension of life expectancy contributes to raise the prevalence of CVD in the increasingly aged society. Therefore, a translational research platform that enables precise evaluation of cardiovascular function in healthy and disease condition and assess the efficacy of novel pharmacological treatments, could implement basic science and contribute to reduce CVD burden. Heart failure is a deadly syndrome characterized by the inability of the heart to meet the oxygen demands of the body (unless there is a compensatory increased of filling pressure) and can manifest either with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF). The development and progression of HFrEF is mostly attributable to impaired contractile performance (systole), while in HFpEF the main problem resides in decreased ability of left ventricle to relax and allow the blood filling (diastole). Murine preclinical models have been broadly used in research to understand pathophysiologic mechanisms of heart failure and test the efficacy of novel therapies. Several methods have been employed to characterise cardiac systolic and diastolic function including Pressure Volume (PV) loop hemodynamic analysis, echocardiography and Magnetic Resonance Imaging (MRI). The choice of one methodology or another depends on many aspects including budget available, skills of the operator and design of the study. The aim of this review is to discuss the importance of several methodologies that are commonly used to characterise the cardiovascular phenotype of preclinical models of heart failure highlighting advantages and limitation of each procedure. Although it requires highly skilled operators for execution, PV loop analysis represents the "gold standard" methodology that enables the assessment of left ventricular performance also independently of vascular loading conditions and heart rate, which conferee a really high physiologic importance to this procedure.

10.
Basic Res Cardiol ; 107(5): 296, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22890560

RESUMO

The role of miR-92a on vascular remodelling after injury is currently unknown. Thus, the aim of the present study was to evaluate the role of miR-92a on rat endothelial and vascular smooth muscle cells proliferation and migration in vitro as well as after balloon injury or arterial stenting in vivo. MiR-92a was highly expressed in RAO-ECs and vascular endothelium, but not in RAO-SMCs or medial smooth muscle as assessed by real-time RT-PCR. Importantly, BrdU incorporation and wound healing assay provide evidence that functional inhibition of miR-92a resulted in an increased RAO-ECs proliferation and migration, but had no effect on RAO-SMCs proliferation or migration in vitro. Immunoblotting analysis revealed an increased phosphorylation of ERK1/2, JNK/SAPK as well as eNOS and phospho-eNOS increased expression level in RAO-ECs as a consequence of miR-92a inhibition. Using gain and loss of function experiments, we showed that miR-92a modulates regulation of KLF4 and MKK4 expression level in endothelial cells. Finally, in vivo administration of antagomiR-92a significantly enhanced re-endothelialization in injured carotid arteries and reduced neointimal formation after balloon injury or arterial stenting. These data provide the first evidence that inhibition of miR-92a may represent a novel strategy to improve endothelial regeneration and reduce restenosis after vascular injury.


Assuntos
Movimento Celular , Proliferação de Células , Células Endoteliais/fisiologia , MicroRNAs/fisiologia , Neointima/prevenção & controle , Lesões do Sistema Vascular/patologia , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , MAP Quinase Quinase 4/genética , Masculino , MicroRNAs/análise , MicroRNAs/antagonistas & inibidores , Músculo Liso Vascular/citologia , Óxido Nítrico/biossíntese , Ratos , Ratos Wistar , Fator de von Willebrand/análise
11.
Acta Physiol (Oxf) ; 236(3): e13869, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36002394

RESUMO

AIMS: Cardiac contractile dysfunction is prevalent in rheumatoid arthritis (RA), with an increased risk for heart failure. A hallmark of RA has increased levels of peptidyl arginine deaminases (PAD) that convert arginine to citrulline leading to ubiquitous citrullination, including in the heart. We aimed to investigate whether PAD-dependent citrullination in the heart was linked to contractile function in a mouse model of RA during the acute inflammatory phase. METHODS: We used hearts from the collagen-induced arthritis (CIA) mice, with overt arthritis, and control mice to analyze cardiomyocyte Ca2+ handling and fractional shortening, the force-Ca2+ relationship in isolated myofibrils, the levels of PAD, protein post-translational modifications, and Ca2+ handling protein. Then, we used an in vitro model to investigate the role of TNF-α in the PAD-mediated citrullination of proteins in cardiomyocytes. RESULTS: Cardiomyocytes from CIA mice displayed larger Ca2+ transients than controls, whereas cell shortening was similar in the two groups. Myofibrils from CIA hearts required higher [Ca2+ ] to reach 50% of maximum shortening, ie Ca2+ sensitivity was lower. This was associated with increased PAD2 expression and α-actin citrullination. TNF-α increased PAD-mediated citrullination which was blocked by pre-treatment with the PAD inhibitor 2-chloroacetamide. CONCLUSION: Using a mouse RA model we found evidence of impaired cardiac contractile function linked to reduced Ca2+ sensitivity, increased expression of PAD2, and citrullination of α-actin, which was triggered by TNF-α. This provides molecular and physiological evidence for acquired cardiomyopathy and a potential mechanism for RA-associated heart failure.


Assuntos
Artrite Experimental , Artrite Reumatoide , Insuficiência Cardíaca , Animais , Camundongos , Citrulinação , Citrulina/metabolismo , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Actinas , Hidrolases/metabolismo , Artrite Reumatoide/metabolismo , Artrite Experimental/metabolismo , Arginina/farmacologia
12.
Am J Physiol Heart Circ Physiol ; 300(6): H1983-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21490325

RESUMO

Exercise adaptations result from a coordinated response of multiple organ systems, including cardiovascular, pulmonary, endocrine-metabolic, immunologic, and skeletal muscle. Among these, the cardiovascular system is the most directly affected by exercise, and it is responsible for many of the important acute changes occurring during physical training. In recent years, the development of animal models of pathological or physiological cardiac overload has allowed researchers to precisely analyze the complex cardiovascular responses to stress in genetically altered murine models of human cardiovascular disease. The intensity-controlled treadmill exercise represents a well-characterized model of physiological cardiac hypertrophy because of its ability to mimic the typical responses to exercise in humans. In this review, we describe cardiovascular adaptations to treadmill exercise in mice and the most important parameters that can be used to quantify such modifications. Moreover, we discuss how treadmill exercise can be used to perform physiological testing in mouse models of disease and to enlighten the role of specific signaling pathways on cardiac function.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Fenômenos Fisiológicos Cardiovasculares , Teste de Esforço , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Cardiomegalia/fisiopatologia , Doenças Cardiovasculares/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Basic Res Cardiol ; 106(4): 577-89, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21369867

RESUMO

Urotensin II (UTII) and its seven trans-membrane receptor (UTR) are up-regulated in the heart under pathological conditions. Previous in vitro studies have shown that UTII trans-activates the epidermal growth factor receptor (EGFR), however, the role of such novel signalling pathway stimulated by UTII is currently unknown. In this study, we hypothesized that EGFR trans-activation by UTII might exert a protective effect in the overloaded heart. To test this hypothesis, we induced cardiac hypertrophy by transverse aortic constriction (TAC) in wild-type mice, and tested the effects of the UTII antagonist Urantide (UR) on cardiac function, structure, and EGFR trans-activation. After 7 days of pressure overload, UR treatment induced a rapid and significant impairment of cardiac function compared to vehicle. In UR-treated TAC mice, cardiac dysfunction was associated with reduced phosphorylation levels of the EGFR and extracellular-regulated kinase (ERK), increased apoptotic cell death and fibrosis. In vitro UTR stimulation induced membrane translocation of ß-arrestin 1/2, EGFR phosphorylation/internalization, and ERK activation in HEK293 cells. Furthermore, UTII administration lowered apoptotic cell death induced by serum deprivation, as shown by reduced TUNEL/Annexin V staining and caspase 3 activation. Interestingly, UTII-mediated EGFR trans-activation could be prevented by UR treatment or knockdown of ß-arrestin 1/2. Our data show, for the first time in vivo, a new UTR signalling pathway which is mediated by EGFR trans-activation, dependent by ß-arrestin 1/2, promoting cell survival and cardioprotection.


Assuntos
Arrestinas/fisiologia , Cardiomegalia/fisiopatologia , Receptores ErbB/genética , Receptores Acoplados a Proteínas G/fisiologia , Ativação Transcricional , Animais , Apoptose/efeitos dos fármacos , Pressão Sanguínea , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Urotensinas/fisiologia , beta-Arrestina 1 , beta-Arrestinas
14.
Front Cell Dev Biol ; 9: 640723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644077

RESUMO

Extracellular vesicles (EVs), which are cell released double layered membrane particles, have been found in every circulating body fluid, and provide a tool for conveying diverse information between cells, influencing both physiological and pathological conditions. Viruses can hijack the EVs secretory pathway to exit infected cells and use EVs endocytic routes to enter uninfected cells, suggesting that EVs and viruses can share common cell entry and biogenesis mechanisms. SARS-CoV-2 is responsible of the coronavirus disease 2019 (Covid-19), which may be accompanied by severe multi-organ manifestations. EVs may contribute to virus spreading via transfer of virus docking receptors such as CD9 and ACE2. Covid-19 is known to affect the renin angiotensin system (RAS), and could promote secretion of harmful EVs. In this scenario EVs might be linked to cardiovascular manifestations of the Covid-19 disease through unbalance in RAS. In contrast EVs derived from mesenchymal stem cells or cardiosphere derived cells, may promote cardiovascular function due to their beneficial effect on angiogenesis, fibrosis, contractility and immuno-modulation. In this article we assessed the potential impact of EVs in cardiovascular manifestations of Covid-19 and highlight potential strategies to control the extracellular signaling for future therapies.

15.
Cardiovasc Res ; 116(3): 619-632, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382275

RESUMO

AIMS: Polycystic ovary syndrome (PCOS) is a common endocrinopathy that is suggested to increase the risk for cardiovascular disease. How PCOS may lead to adverse cardiac outcomes is unclear and here we hypothesized that prenatal exposure to dihydrotestosterone (DHT) and/or maternal obesity in mice induce adverse metabolic and cardiac programming in female offspring that resemble the reproductive features of the syndrome. METHODS AND RESULTS: The maternal obese PCOS phenotype was induced in mice by chronic high-fat-high-sucrose consumption together with prenatal DHT exposure. The prenatally androgenized (PNA) female offspring displayed cardiac hypertrophy during adulthood, an outcome that was not accompanied by aberrant metabolic profile. The expression of key genes involved in cardiac hypertrophy was up-regulated in the PNA offspring, with limited or no impact of maternal obesity. Furthermore, the activity of NADPH oxidase, a major source of reactive oxygen species in the cardiovascular system, was down-regulated in the PNA offspring heart. We next explored for early transcriptional changes in the heart of newly born PNA offspring, which could account for the long-lasting changes observed in adulthood. Neonatal PNA hearts displayed an up-regulation of transcription factors involved in cardiac hypertrophic remodelling and of the calcium-handling gene, Slc8a2. Finally, to determine the specific role of androgens in cardiovascular function, female mice were continuously exposed to DHT from pre-puberty to adulthood, with or without the antiandrogen flutamide. Continuous exposure to DHT led to adverse left ventricular remodelling, and increased vasocontractile responses, while treatment with flutamide partly alleviated these effects. CONCLUSION: Taken together, our results indicate that intrauterine androgen exposure programmes long-lasting heart remodelling in female mouse offspring that is linked to left ventricular hypertrophy and highlight the potential risk of developing cardiac dysfunction in daughters of mothers with PCOS.


Assuntos
Di-Hidrotestosterona , Hipertrofia Ventricular Esquerda/etiologia , Síndrome do Ovário Policístico/induzido quimicamente , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Dieta Hiperlipídica , Sacarose Alimentar , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Exposição Materna , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Obesidade/complicações , Gravidez , Fatores Sexuais , Desenvolvimento Sexual , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
17.
Heart ; 104(24): 2026-2034, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29804097

RESUMO

OBJECTIVES: Patients with rheumatoid arthritis (RA) display an increased risk of heart failure independent of traditional cardiovascular risk factors. To elucidate myocardial disease in RA, we have investigated molecular and cellular remodelling of the heart in an established mouse model of RA. METHODS: The collagen antibody-induced arthritis (CAIA) RA mouse model is characterised by joint inflammation and increased inflammatory markers in the serum. We used CAIA mice in the postinflammatory phase that resembles medically controlled RA or RA in remission. Hearts were collected for cardiomyocyte isolation, biochemistry and histology analysis. RESULTS: Hearts from mice subjected to CAIA displayed hypertrophy (heart/body weight, mean±SD: 5.9±0.8vs 5.1±0.7 mg/g, p<0.05), fibrosis and reduced left ventricular fractional shortening compared with control. Cardiomyocytes from CAIA mice showed reduced cytosolic [Ca2+]i transient amplitudes (F/F0, mean±SD: 3.0±1.2vs 3.6±1.5, p<0.05) that was linked to reductions in sarcoplasmic reticulum (SR) Ca2+ store (F/F0, mean±SD: 3.5±1.3vs 4.4±1.3, p<0.01) measured with Ca2+ imaging. This was associated to lower fractional shortening in the cardiomyocytes from the CAIA mice (%FS, mean±SD: 3.4±2.2 vs 4.6%±2.3%, p<0.05). Ca2+ handling proteins displayed oxidation-dependent posttranslational modifications that together with an increase in superoxide dismutase expression indicate a cell environment with oxidative stress. CONCLUSIONS: This study shows that inflammation during active RA has long-term consequences on molecular remodelling and contractile function of the heart, which further supports that rheumatology patients should be followed for development of heart failure.


Assuntos
Artrite Experimental/complicações , Artrite Reumatoide/complicações , Cardiomiopatias/etiologia , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Função Ventricular Esquerda , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/fisiopatologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Feminino , Fibrose , Masculino , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/patologia , Processamento de Proteína Pós-Traducional , Retículo Sarcoplasmático/metabolismo , Remodelação Ventricular
18.
Hypertension ; 71(3): 507-517, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335250

RESUMO

MitoAKAPs (mitochondrial A kinase anchoring proteins), encoded by the Akap1 gene, regulate multiple cellular processes governing mitochondrial homeostasis and cell viability. Although mitochondrial alterations have been associated to endothelial dysfunction, the role of mitoAKAPs in the vasculature is currently unknown. To test this, postischemic neovascularization, vascular function, and arterial blood pressure were analyzed in Akap1 knockout mice (Akap1-/- ) and their wild-type (wt) littermates. Primary cultures of aortic endothelial cells (ECs) were also obtained from Akap1-/- and wt mice, and ECs migration, proliferation, survival, and capillary-like network formation were analyzed under different experimental conditions. After femoral artery ligation, Akap1-/- mice displayed impaired blood flow and functional recovery, reduced skeletal muscle capillary density, and Akt phosphorylation compared with wt mice. In Akap1-/- ECs, a significant enhancement of hypoxia-induced mitophagy, mitochondrial dysfunction, reactive oxygen species production, and apoptosis were observed. Consistently, capillary-like network formation, migration, proliferation, and AKT phosphorylation were reduced in Akap1-/- ECs. Alterations in Akap1-/- ECs behavior were also confirmed in Akap1-/- mice, which exhibited a selective reduction in acetylcholine-induced vasorelaxation in mesenteric arteries and a mild but significant increase in arterial blood pressure levels compared with wt. Finally, overexpression of a constitutively active Akt mutant restored vascular reactivity and ECs function in Akap1-/- conditions. These results demonstrate the important role of mitoAKAPs in the modulation of multiple ECs functions in vivo and in vitro, suggesting that mitochondria-dependent regulation of ECs might represent a novel therapeutic approach in cardiovascular diseases characterized by endothelial dysfunction.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Células Endoteliais/patologia , Mitocôndrias/patologia , Neovascularização Patológica/patologia , Espécies Reativas de Oxigênio/metabolismo , Análise de Variância , Animais , Movimento Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Fosforilação , Distribuição Aleatória , Valores de Referência , Fatores de Risco , Estatísticas não Paramétricas , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia
20.
PLoS One ; 11(5): e0154076, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27136357

RESUMO

A-kinase anchoring proteins (AKAPs) transmit signals cues from seven-transmembrane receptors to specific sub-cellular locations. Mitochondrial AKAPs encoded by the Akap1 gene have been shown to modulate mitochondrial function and reactive oxygen species (ROS) production in the heart. Under conditions of hypoxia, mitochondrial AKAP121 undergoes proteolytic degradation mediated, at least in part, by the E3 ubiquitin ligase Seven In-Absentia Homolog 2 (Siah2). In the present study we hypothesized that Akap1 might be crucial to preserve mitochondrial function and structure, and cardiac responses to myocardial ischemia. To test this, eight-week-old Akap1 knockout mice (Akap1-/-), Siah2 knockout mice (Siah2-/-) or their wild-type (wt) littermates underwent myocardial infarction (MI) by permanent left coronary artery ligation. Age and gender matched mice of either genotype underwent a left thoracotomy without coronary ligation and were used as controls (sham). Twenty-four hours after coronary ligation, Akap1-/- mice displayed larger infarct size compared to Siah2-/- or wt mice. One week after MI, cardiac function and survival were also significantly reduced in Akap1-/- mice, while cardiac fibrosis was significantly increased. Akap1 deletion was associated with remarkable mitochondrial structural abnormalities at electron microscopy, increased ROS production and reduced mitochondrial function after MI. These alterations were associated with enhanced cardiac mitophagy and apoptosis. Autophagy inhibition by 3-methyladenine significantly reduced apoptosis and ameliorated cardiac dysfunction following MI in Akap1-/- mice. These results demonstrate that Akap1 deficiency promotes cardiac mitochondrial aberrations and mitophagy, enhancing infarct size, pathological cardiac remodeling and mortality under ischemic conditions. Thus, mitochondrial AKAPs might represent important players in the development of post-ischemic cardiac remodeling and novel therapeutic targets.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Ecocardiografia , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA