Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 113(4): 2290-2303, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34044154

RESUMO

Varroa destructor is an ectoparasite mite that attacks bees leading to colony disorders worldwide. microRNAs (miRNAs) are key molecules used by eukaryotes to post-transcriptional control of gene expression. Nevertheless, still lack information aboutV. destructor miRNAs and its regulatory networks. Here, we used an integrative strategy to characterize the miRNAs in the V. destructor mite. We identified 310 precursors that give rise to 500 mature miRNAs, which 257 are likely mite-specific elements. miRNAs showed canonical length ranging between 18 and 25 nucleotides and 5' uracil preference. Top 10 elements concentrated over 80% of total miRNA expression, with bantam alone representing ~50%. We also detected non-templated bases in precursor-derived small RNAs, indicative of miRNA post-transcriptional regulatory mechanisms. Finally, we note that conserved miRNAs control similar processes in different organisms, suggesting a conservative role. Altogether, our findings contribute to the better understanding of the mite biology that can assist future studies on varroosis control.


Assuntos
MicroRNAs , Varroidae , Animais , Abelhas/parasitologia , Regulação da Expressão Gênica , Genoma , MicroRNAs/genética , Varroidae/genética
2.
Planta ; 254(5): 94, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34642817

RESUMO

MAIN CONCLUSION: Decreased accumulation of polyphenol oxidase, H2O2 accumulation, effective regulation of programmed cell death, and a protein predicted as allergenic can play key roles in cacao defense against Ceratocystis cacaofunesta. Ceratocystis wilt, caused by the fungus Ceratocystis cacaofunesta, has destroyed millions of Theobroma cacao trees in several countries of the Americas. Through proteomics, systems biology, and enzymatic analyses of infected stems, it was possible to infer mechanisms used by resistant (TSH1188) and susceptible (CCN51) cacao genotypes during infection. Protein extraction from xylem-enriched tissue of stems inoculated with the fungus and their controls 1 day after inoculation was carried out, followed by separation through two-dimensional gel electrophoresis and identification by mass spectrometry. Enzyme activity was determined at 1, 3, 7 and 15 days after inoculation. A total of 50 differentially accumulated distinct proteins were identified in the treatments of both genotypes and were classified into 10 different categories. An interaction network between homologous proteins from Arabidospsis thaliana was generated for each genotype, using the STRING database and Cytoscape software. Primary metabolism processes were apparently repressed in both genotypes. The resistance factors suggested for genotype TSH1188 were: H2O2 accumulation, effective regulation of programmed cell death, production of phytoalexins derived from tryptophan and furanocoumarins, and participation of a predicted allergenic protein with probable ribonuclease function inhibiting the germination and propagation of the fungus. In the susceptible genotype, it is possible that its recognition and signaling mechanism through proteins from the SEC14 family is easily overcome by the pathogen. Our results will help to better understand the interaction between cacao and one of its most aggressive pathogens, to create disease control strategies.


Assuntos
Cacau , Ceratocystis , Genótipo , Peróxido de Hidrogênio , Doenças das Plantas , Proteoma , Xilema
3.
Ecotoxicology ; 29(3): 340-358, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32107699

RESUMO

Cd is a non-essential metal and highly toxic to plants, animals and humans, even at very low concentrations. Cd has been found in cocoa beans and in their products, as in the case of chocolate. Mn plays an important role in photosynthetic and can interact with Cd and attenuate its toxic effects on plants. The objective of this work was to evaluate the mechanisms of Mn response in the mitigation of Cd toxicity in young plants of the CCN 51 cacao genotype submitted to 0.8 mmol Cd kg-1, 1.6 mmol Mn kg-1 or the combination of 0.4 mmol Cd kg-1 + 0.8 mmol Mn kg-1 soil, together with the control treatment (without addition of Cd and Mn in soil), by means of analysis of changes in the profile of exclusive proteins (EP) and differentially accumulated proteins (DAP). Leaf and root proteins were extracted and quantified from the different treatments, followed by proteomic analysis. About eight DAP and 38 EP were identified in leaves, whereas in roots 43 DAP and 21 EP were identified. Some important proteins induced in the presence of Cd and repressed in the presence of Cd + Mn or vice versa, were ATPases, isoflavone reductase, proteasome and chaperonin. It was concluded that proteins involved in oxidoreduction and defense and stress response processes, in addition to other processes, were induced in the presence of Cd and repressed in the presence of Cd + Mn. This demonstrated that Mn was able to mitigate the toxic effects of Cd on young plants of the CCN 51 cocoa genotype.


Assuntos
Cacau/fisiologia , Cádmio/toxicidade , Manganês/química , Poluentes do Solo/toxicidade , Agricultura , Fotossíntese , Folhas de Planta/química , Raízes de Plantas/química , Proteoma/metabolismo , Proteômica , Solo , Poluentes do Solo/química
4.
Ecotoxicol Environ Saf ; 144: 148-157, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28614756

RESUMO

Cadmium (Cd) is a highly toxic metal for plants, even at low concentrations in the soil. The annual production of world cocoa beans is approximately 4 million tons. Most of these fermented and dried beans are used in the manufacture of chocolate. Recent work has shown that the concentration of Cd in these beans has exceeded the critical level (0.6mgkg-1 DM). The objective of this study was to evaluate the toxicity of Cd in young plants of CCN 51 cacao genotype grown in soil with different concentrations of Cd (0, 0.05 and 0.1gkg-1 soil) through photosynthetic, antioxidative, molecular and ultrastructural changes. The increase of Cd concentration in the soil altered mineral nutrient absorption by competition or synergism, changed photosynthetic activity caused by reduction in chloroplastidic pigment content and damage to the photosynthetic machinery evidenced by the Fv/Fm ratio and expression of the psbA gene and increased GPX activity in the root and SOD in leaves. Additionally, ultrastructural alterations in roots and leaves were also evidenced with the increase of the concentration of Cd in the soil, whose toxicity caused rupture of biomembranes in root and leaf cells, reduction of the number of starch grains in foliar cells, increase of plastoglobules in chloroplasts and presence of multivesiculated bodies in root cells. It was concluded, therefore, that soil Cd toxicity caused damage to the photosynthetic machinery, antioxidative metabolism, gene expression and irreversible damage to root cells ultrastructure of CCN 51 cocoa plants, whose damage intensity depended on the exposure time to the metal.


Assuntos
Antioxidantes/metabolismo , Cacau/efeitos dos fármacos , Cádmio/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Cacau/metabolismo , Cacau/ultraestrutura , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos
5.
J Basic Microbiol ; 57(11): 962-973, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28804942

RESUMO

Functional screening of metagenomic libraries is an important tool for the discovery of new molecules. The metabolic diversity of microorganisms enables survival in harsh environments and is related to the production of enzymes. In this study, we identified a protease-producing clone from a metagenomic library derived from mangrove sediment. The protease was purified by ammonium sulphate precipitation and gel filtration chromatography, with a yield of 77.27% and a specific activity of 8.57 U µg-1 . It had a molecular weight of approximately 70 kDa. MS/MS in ESI-Q-TOF revealed nine peptides similar to a peptidase of Bacillus safensis. The aligned partial sequence showed 47.48% identity and 82.74% similarity to the conserved domains of a glutamyl aminopeptidase from the human gut metagenome and 32.12% total coverage. The protease had an optimal pH of 8.5 and optimal activity at 60°C. At pH 9-12, its activity was greater than 80%. It had moderate thermotolerance and thermostability at temperatures of 40 and 50 °C. The KM and Vmax values were estimated to be 0.92 mg ml-1 , and 13.15 mmol min-1 for azocasein. Substrate specificity analysis showed that PR4A3 was active on gelatin, blood, egg yolk, and milk. These results support the potential use of PR4A3 in biotechnological applications.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Sedimentos Geológicos/microbiologia , Metagenômica , Áreas Alagadas , Sequência de Aminoácidos , Bacillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biotecnologia , Brasil , Cromatografia em Gel , Endopeptidases/genética , Endopeptidases/isolamento & purificação , Ativação Enzimática , Ensaios Enzimáticos , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Metagenoma , Peso Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Sais , Alinhamento de Sequência , Especificidade por Substrato , Espectrometria de Massas em Tandem , Temperatura
6.
BMC Plant Biol ; 15: 69, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25849288

RESUMO

BACKGROUND: Rootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. Alterations in protein abundance in citrus roots are crucial for plant adaptation to water deficit. We performed two-dimensional electrophoresis (2-DE) separation followed by LC/MS/MS to assess the proteome responses of the roots of two citrus rootstocks, Rangpur lime (Citrus limonia Osbeck) and 'Sunki Maravilha' (Citrus sunki) mandarin, which show contrasting tolerances to water deficits at the physiological and molecular levels. RESULTS: Changes in the abundance of 36 and 38 proteins in Rangpur lime and 'Sunki Maravilha' mandarin, respectively, were observed via LC/MS/MS in response to water deficit. Multivariate principal component analysis (PCA) of the data revealed major changes in the protein profile of 'Sunki Maravilha' in response to water deficit. Additionally, proteomics and systems biology analyses allowed for the general elucidation of the major mechanisms associated with the differential responses to water deficit of both varieties. The defense mechanisms of Rangpur lime included changes in the metabolism of carbohydrates and amino acids as well as in the activation of reactive oxygen species (ROS) detoxification and in the levels of proteins involved in water stress defense. In contrast, the adaptation of 'Sunki Maravilha' to stress was aided by the activation of DNA repair and processing proteins. CONCLUSIONS: Our study reveals that the levels of a number of proteins involved in various cellular pathways are affected during water deficit in the roots of citrus plants. The results show that acclimatization to water deficit involves specific responses in Rangpur lime and 'Sunki Maravilha' mandarin. This study provides insights into the effects of drought on the abundance of proteins in the roots of two varieties of citrus rootstocks. In addition, this work allows for a better understanding of the molecular basis of the response to water deficit in citrus. Further analysis is needed to elucidate the behaviors of the key target proteins involved in this response.


Assuntos
Compostos de Cálcio/metabolismo , Óxidos/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Desidratação , Secas , Eletroforese em Gel Bidimensional , Análise de Componente Principal , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
7.
Ecotoxicol Environ Saf ; 115: 174-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25700096

RESUMO

Seeds from Theobroma cacao progenies derived from the self-pollination of 'Catongo'×'Catongo' and the crossing between CCN-10×SCA-6 were immersed for 24h in different Cd solutions (2; 4; 8; 16 and 32 mgL(-1)) along with the control treatment (without Cd). Shortly after, the seeds were sown in plastic tubes containing organic substrate and were grown in a greenhouse for 60 days. The treatment with Cd was observed to cause morphological, biochemical, molecular and ultrastructural changes in both progenies of T. cacao. There has been deformation in chloroplasts, nuclear chromatin condensation, and reduction in thickness of the mesophyll. As for 'Catongo'×'Catongo', a decrease in thickness of the epidermis was noted on the abaxial face. There has been increased guaiacol peroxidase activity in the roots of CCN-10×SCA-6, as well as in the''Catongo'×'Catongo' leaves. In the presence of Cd, CCN-10×SCA-6 showed increased expression of the genes associated with the biosynthesis of phytochelatin (PCS-1) and class III peroxidases (PER-1) in leaves, and metallothionein (MT2b), in roots. In 'Catongo'×'Catongo', there has been an increase in the expression of genes associated with the biosynthesis of PER-1 and cytosolic superoxide dismutase dependent on copper and zinc (Cu-Zn SODCyt) in leaves and from MT2b and PCS-1 and roots. There was higher accumulation of Cd in the aerial parts of seedlings from both progenies, whereas the most pronounced accumulation was seen in''Catongo'×'Catongo'. The increase in Cd concentration has led to lower Zn and Fe levels in both progenies. Hence, one may conclude that the different survival strategies used by CCN-10×SCA-6 made such progeny more tolerant to Cd stress when compared to''Catongo'×'Catongo'.


Assuntos
Cacau/efeitos dos fármacos , Cádmio/toxicidade , Cacau/genética , Cacau/metabolismo , Cacau/ultraestrutura , Cádmio/análise , Cloroplastos/efeitos dos fármacos , Cobre/metabolismo , Peroxidases/metabolismo , Fitoquelatinas/biossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/ultraestrutura , Superóxido Dismutase/metabolismo , Zinco/metabolismo
8.
Physiol Plant ; 150(1): 1-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23586401

RESUMO

NEP1 (necrosis- and ethylene-inducing peptide 1)-like proteins (NLPs) have been identified in a variety of taxonomically unrelated plant pathogens and share a common characteristic of inducing responses of plant defense and cell death in dicotyledonous plants. Even though some aspects of NLP action have been well characterized, nothing is known about the global range of modifications in proteome and metabolome of NLP-treated plant cells. Here, using both proteomic and metabolomic approaches we were able to identify the global molecular and biochemical changes in cells of Nicotiana benthamiana elicited by short-term treatment with MpNEP2, a NLP of Moniliophthora perniciosa, the basidiomycete responsible for the witches' broom disease on cocoa (Theobroma cacao L.). Approximately 100 protein spots were collected from 2-DE gels in each proteome, with one-third showing more than twofold differences in the expression values. Fifty-three such proteins were identified by mass spectrometry (MS)/MS and mapped into specific metabolic pathways and cellular processes. Most MpNEP2 upregulated proteins are involved in nucleotide-binding function and oxidoreductase activity, whereas the downregulated proteins are mostly involved in glycolysis, response to stress and protein folding. Thirty metabolites were detected by gas spectrometry (GC)/MS and semi-quantified, of which eleven showed significant differences between the treatments, including proline, alanine, myo-inositol, ethylene, threonine and hydroxylamine. The global changes described affect the reduction-oxidation reactions, ATP biosynthesis and key signaling molecules as calcium and hydrogen peroxide. These findings will help creating a broader understanding of NLP-mediated cell death signaling in plants.


Assuntos
Agaricales/fisiologia , Proteínas Fúngicas/fisiologia , Interações Hospedeiro-Parasita , Metaboloma/fisiologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Células Cultivadas , Ontologia Genética , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Proteínas de Plantas/fisiologia , Proteoma/fisiologia , Nicotiana/citologia
9.
Biotechnol J ; 19(3): e2300307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472101

RESUMO

BACKGROUND: The worldwide growing demand for human insulin for treating diabetes could be supplied by transgenic animals producing insulin in their milk. METHODS AND RESULTS: Pseudo-lentivirus containing the bovine ß-casein promoter and human insulin sequences was used to produce modified adult fibroblasts, and the cells were used for nuclear transfer. Transgenic embryos were transferred to recipient cows, and one pregnancy was produced. Recombinant protein in milk was evaluated using western blotting and mass spectrometry. One transgenic cow was generated, and in milk analysis, two bands were observed in western blotting with a molecular mass corresponding to the proinsulin and insulin. The mass spectrometry analysis showed the presence of human insulin more than proinsulin in the milk, and it identified proteases in the transgenic milk that could convert proinsulin into insulin and insulin-degrading enzyme that could degrade the recombinant protein. CONCLUSION: The methodologies used for generating the transgenic cow allowed the detection of the production of recombinant protein in the milk at low relative expression compared to milk proteins, using mass spectrometry, which was efficient for detecting recombinant protein with low expression in milk. Milk proteases could act on protein processing converting recombinant protein to functional protein. On the other hand, some milk proteases could act in degrading the recombinant protein.


Assuntos
Leite , Proinsulina , Feminino , Gravidez , Animais , Bovinos , Humanos , Animais Geneticamente Modificados/metabolismo , Proinsulina/análise , Proinsulina/metabolismo , Leite/química , Proteínas Recombinantes/metabolismo , Insulina/análise , Peptídeo Hidrolases/metabolismo
10.
Proteomics ; 12(6): 820-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22539433

RESUMO

Brucella abortus is a Gram-negative intracellular bacterium that causes infectious abortion in food-producing animals and chronic infection in humans. This study aimed to characterize a B. abortus S19 antigen preparation obtained by Triton X-114 (TX-114) extraction through immunoproteomics to differentiate infected from vaccinated cattle. Three groups of bovine sera were studied: GI, 30 naturally infected cows; GII, 30 S19-vaccinated heifers; and GIII, 30 nonvaccinated seronegative cows. One-dimensional (1D) and two-dimensional electrophoretic profiles of TX-114 hydrophilic phase antigen revealed a broad spectrum of polypeptides (10-79 kDa). 1D immunoblot showed widespread seroreactivity profile in GI compared with restricted profile in GII. Three antigenic components (10, 12, 17 kDa) were recognized exclusively by GI sera, representing potential markers of infection and excluding vaccinal response. The proteomic characterization revealed 56 protein spots, 27 of which were antigenic spots showing differential seroreactivity profile between GI and GII, especially polypeptides <20 kDa that were recognized exclusively by GI. MS/MS analysis identified five B. abortus S19 proteins (Invasion protein B, Sod, Dps, Ndk, and Bfr), which were related with antigenicity in naturally infected cattle. In conclusion, immunoproteomics of this new antigen preparation enabled the characterization of proteins that could be used as tools to develop sensitive and specific immunoassays for serodiagnosis of bovine brucellosis, with emphasis on differentiation between S19 vaccinated and infected cattle.


Assuntos
Brucella abortus/imunologia , Brucelose Bovina/sangue , Brucelose Bovina/imunologia , Proteoma/imunologia , Proteômica/métodos , Animais , Vacina contra Brucelose/imunologia , Brucelose Bovina/prevenção & controle , Bovinos , Humanos , Octoxinol , Polietilenoglicóis , Proteoma/análise , Testes Sorológicos
11.
An Acad Bras Cienc ; 84(2): 469-86, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22652759

RESUMO

The enzyme chitinase from Moniliophthora perniciosa the causative agent of the witches' broom disease in Theobroma cacao, was partially purified with ammonium sulfate and filtration by Sephacryl S-200 using sodium phosphate as an extraction buffer. Response surface methodology (RSM) was used to determine the optimum pH and temperature conditions. Four different isoenzymes were obtained: ChitMp I, ChitMp II, ChitMp III and ChitMp IV. ChitMp I had an optimum temperature at 44-73ºC and an optimum pH at 7.0-8.4. ChitMp II had an optimum temperature at 45-73ºC and an optimum pH at 7.0-8.4. ChitMp III had an optimum temperature at 54-67ºC and an optimum pH at 7.3-8.8. ChitMp IV had an optimum temperature at 60ºC and an optimum pH at 7.0. For the computational biology, the primary sequence was determined in silico from the database of the Genome/Proteome Project of M. perniciosa, yielding a sequence with 564 bp and 188 amino acids that was used for the three-dimensional design in a comparative modeling methodology. The generated models were submitted to validation using Procheck 3.0 and ANOLEA. The model proposed for the chitinase was subjected to a dynamic analysis over a 1 ns interval, resulting in a model with 91.7% of the residues occupying favorable places on the Ramachandran plot and an RMS of 2.68.


Assuntos
Agaricales/enzimologia , Quitinases/biossíntese , Sequência de Aminoácidos , Quitinases/química , Quitinases/genética , Cromatografia em Gel , Modelos Biológicos , Dados de Sequência Molecular
12.
Mol Plant Microbe Interact ; 24(7): 839-48, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21405988

RESUMO

Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).


Assuntos
Agaricales/metabolismo , Agaricales/patogenicidade , Carboxiliases/biossíntese , Nicotiana , Ácido Oxálico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carboxiliases/genética , Morte Celular , Flammulina/enzimologia , Flammulina/genética , Formiatos/metabolismo , Necrose , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
13.
An Acad Bras Cienc ; 83(2): 599-609, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21625799

RESUMO

The enzyme glucanase from Moniliophthora perniciosa was produced in liquid medium and purified from the culture supernatant. A multivariate statistical approach (Response Surface Methodology - RSM) was employed to evaluate the effect of variables, including inducer (yeast extract) and fermentation time, on secreted glucanase activities M. perniciosa detected in the culture medium. The crude enzyme present in the supernatant was purified in two steps: precipitation with ammonium sulfate (70%) and gel filtration chromatography on Sephacryl S-200. The best inducer and fermentation time for glucanase activities were 5.9 g L(-1) and 13 days, respectively. The results revealed three different isoforms (GLUI, GLUII and GLUIII) with purification factors of 4.33, 1.86 and 3.03, respectively. The partially purified enzymatic extract showed an optimum pH of 5.0 and an optimum temperature of 40°C. The enzymatic activity increased in the presence of KCl at all concentrations studied. The glucanase activity was highest in the presence of 0.2 M NaCl. The enzyme showed high thermal stability, losing only 10.20% of its specific activity after 40 minutes of incubation at 90°C. A purified enzyme with relatively good thermostability that is stable at low pH might be used in future industrial applications.


Assuntos
Agaricales/enzimologia , Glucana Endo-1,3-beta-D-Glucosidase/biossíntese , Cromatografia em Gel , Estabilidade Enzimática , Fermentação , Glucana Endo-1,3-beta-D-Glucosidase/química , Glucana Endo-1,3-beta-D-Glucosidase/isolamento & purificação , Especificidade por Substrato , Temperatura
14.
Diagn Microbiol Infect Dis ; 62(3): 245-54, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18703303

RESUMO

We evaluated the reactivity of IgG and IgG1 antibodies by immunoassays in sera from patients with acute and chronic phases of toxoplasmosis against 2 recombinant antigens, SAG2A (full molecule) and SAG2ADelta (truncated molecule from the epitope recognized by A4D12 monoclonal antibody [mAb]), in comparison with soluble Toxoplasma antigen (STAg). Results demonstrated higher IgG reactivity in acute sera with both STAg and SAG2A than in chronic phase sera, and this difference was more evident for IgG1 antibodies to SAG2A. Low reactivity to SAG2ADelta was found in sera from both phases. ELISA-IgG-SAG2A showed high sensitivity (95%) and specificity (100%). ELISA-IgG1-SAG2A sensitivity was significantly higher (90%) for acute than for chronic (67%) phases. ELISA-IgG avidity using STAg demonstrated high performance for characterizing sera with high avidity (>60%), whereas the ELISA-IgG1 avidity-SAG2A immunoassay was the best to define chronic phase infection. It can be concluded that SAG2A is an antigen that may be used as a diagnostic tool to characterize the acute phase Toxoplasma gondii infection. Also, the epitope recognized by A4D12 mAb may be critical for the recognition of this molecule.


Assuntos
Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas de Protozoários , Toxoplasma/imunologia , Toxoplasmose/diagnóstico , Doença Aguda , Animais , Afinidade de Anticorpos , Antígenos de Protozoários/imunologia , Biomarcadores/sangue , Distribuição de Qui-Quadrado , Feminino , Humanos , Imunoglobulina G/sangue , Gravidez , Complicações Parasitárias na Gravidez/diagnóstico , Complicações Parasitárias na Gravidez/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Toxoplasma/genética , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Toxoplasmose Congênita/diagnóstico , Toxoplasmose Congênita/imunologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-28487845

RESUMO

Eutirucallin is a lectin isolated from the latex of Euphorbia tirucalli, a plant known for its medical properties. The present study explores various characteristics of Eutirucallin including stability, cytotoxicity against tumor cells, antimicrobial and antiparasitic activities. Eutirucallin was stable from 2 to 40 days at 4°C, maintained hemagglutinating activity within a restricted range, and showed optimal activity at pH 7.0-8.0. Eutirucallin presented antiproliferative activity for HeLa, PC3, MDA-MB-231, and MCF-7 tumor cells but was not cytotoxic for non-tumorigenic cells such as macrophages and fibroblasts. Eutirucallin inhibited the Ehrlich ascites carcinoma in vivo and it was also observed that Eutirucallin inhibited 62.5% of Escherichia coli growth. Also, Eutirucallin showed to be effective when tested directly against Toxoplasma gondii infection in vitro. Therefore, this study sheds perspectives for pharmacological applications of Eutirucallin.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Animais , Anti-Infecciosos/química , Antineoplásicos/química , Antiparasitários/farmacologia , Brasil , Carcinoma de Ehrlich/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Euphorbia/química , Fibroblastos/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Hemaglutinação , Humanos , Concentração de Íons de Hidrogênio , Lectinas/farmacologia , Células MCF-7 , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico
16.
Plant Physiol Biochem ; 119: 147-158, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28866236

RESUMO

Water scarcity can elicit drastic changes in plant metabolic and hormonal regulation, which may be of fundamental importance to stress tolerance. The study of plant the metabolic alterations in response to water deficit, especially the effects of the rootstocks level, is important to elucidate the mechanisms associated to drought tolerance. To verify the influence of rootstock and grafting on the tolerance to drought in citrus plants, we analyzed the growth, phytohormone levels and flavonoid profiles in grafted and ungrafted citrus plants subjected to different soil water regimes on plant status (well-watered, moderate drought and severe drought and rehydrated) under field conditions. The experiments were conducted under field conditions in the Brazilian Agricultural Research Corporation (EMBRAPA), Cruz das Almas, BA, Brazil. Water deficit reduced the total leaf area per plant in all canopy/rootstock combinations. Self-grafting reduce root volume, area and length when compared to ungrafted plants. Drought-induced increases in salicylic acid and abscisic acid associated with concomitant reductions in indoleacetic acid were observed in most canopy/rootstock combinations. However, plants with 'Sunki Maravilha' rootstocks exhibited the most pronounced changes in hormonal levels upon drought stress. Associated to these hormonal changes, drought also significantly affected flavonoid content and profile in both leaves and roots of the distinct citrus combinations. Glycosylated (GFs) and polimethoxylated flavonoids were predominantly found in leaves, whereas prenylated coumarins were found in the roots. Leaf levels of GFs (vicenin, F11, rutin and rhoifolin) were particularly modulated by drought in plants with 'Rangpur Santa Cruz' lime rootstock, whereas root levels of prenylated coumarins were most regulated by drought in plants with the 'Sunki Maravilha' root system. Taken together, these data indicate that the impacts of water deficit restriction on growth, hormonal balance and flavonoid profiles significantly varies depending on the canopy/rootstock combinations.


Assuntos
Citrus/crescimento & desenvolvimento , Flavonoides/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Desidratação/metabolismo
17.
Front Microbiol ; 8: 1681, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936201

RESUMO

The intensive use of pesticides to control pests in agriculture has promoted several issues relating to environment. As chemical pesticides remain controversial, biocontrol agents originating from fungi could be an alternative. Among them, we highlight biocontrol agents derived from the fungi genus Trichoderma, which have been documented in limiting the growth of other phytopathogenic fungus in the roots and leaves of several plant species. An important member of this genus is Trichoderma asperelloides, whose biocontrol agents have been used to promote plant growth while also treating soil diseases caused by microorganisms in both greenhouses and outdoor crops. To evaluate the safety of fungal biological agents for human health, tests to detect potentially adverse effects, such as allergenicity, toxicity, infectivity and pathogenicity, are crucial. In addition, identifying possible immunomodulating properties of fungal biocontrol agents merits further investigation. Thus, the aim of this study was to evaluate the effects of T. asperelloides spores in the internalization of Candida parapsilosis yeast by mice phagocytes, in order to elucidate the cellular and molecular mechanism of this interaction, as a model to understand possible in vivo effects of this fungus. For this, mice were exposed to a fungal spore suspension through-intraperitoneal injection, euthanized and cells from the peripheral blood and peritoneal cavity were collected for functional, quantitative and phenotypic analysis, throughout analysis of membrane receptors gene expression, phagocytosis ability and cells immunophenotyping M1 (CCR7 and CD86) and M2 (CCR2 and CD206). Our analyses showed that phagocytes exposed to fungal spores had reduced phagocytic capacity, as well as a decrease in the quantity of neutrophils and monocytes in the peripheral blood and peritoneal cavity. Moreover, macrophages exposed to T. asperelloides spores did not display the phenotypic profile M1/M2, and had reduced expression of pattern recognition receptors, such as TLR2, dectin-1 and dectin-2, all involved in the first line of defense against clinically important yeasts. Our data could infer that T. asperelloides spores may confer susceptibility to infection by C. parapsilosis.

18.
Phytopathology ; 96(1): 61-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18944205

RESUMO

ABSTRACT The witches'-broom disease, caused by the basidiomycete Crinipellis perniciosa, is the most limiting factor for cacao cultivation in Brazil. Trichoderma stromaticum is a mycoparasite of the witches'-broom pathogen of cacao that is currently being applied in the field to manage the disease in Bahia State, Brazil. In this work, molecular and traditional methods were used to study the genetic and biological diversity of this mycoparasite. Ninety-one isolates, mostly collected from farms not sprayed with the fungus, were analyzed by amplified fragment length polymorphisms (AFLP), which showed that two genetic groups (I and II) of T. stromaticum occur in Bahia State. This classification of T. stromaticum into two distinct AFLP groups was also in agreement with several other characteristics, including growth on agar media at different temperatures and sporulation on infected stem segments (broom pieces) and rice grains. Group II favors higher temperatures compared with group I. The genetic and biological differences of the isolates, however, were not evident in field experiments, where sporulation was evaluated on the surface of brooms under natural conditions. Our results show that there is considerable genetic and biological diversity within T. stromaticum in Bahia and other cacao-growing regions of South America that are affected by the witches'-broom disease. This diversity could be explored in the development of efficient biological control agents against the disease. Factors that may affect the application and performance of this biocontrol agent in the field, such as sporulation on rice substrate and on the brooms and growth at various temperatures, are discussed.

19.
Artigo em Inglês | MEDLINE | ID: mdl-27313992

RESUMO

Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2) is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN), as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b), mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-α and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Peptídeos/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose/prevenção & controle , Adjuvantes Imunológicos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Imunidade Humoral , Interleucinas/imunologia , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Estruturais , Peptídeos/síntese química , Peptídeos/genética , Conformação Proteica , Vacinas Protozoárias/síntese química , Vacinas Protozoárias/genética , Taxa de Sobrevida , Toxoplasma/química , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Resultado do Tratamento
20.
PLoS One ; 9(10): e108705, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25289700

RESUMO

Soil flooding causes changes in gene transcription, synthesis and degradation of proteins and cell metabolism. The main objective of this study was to understand the biological events of Theobroma cacao during soil flooding-induced stress, using the analyses of gene expression and activity of key enzymes involved in fermentation, as well as the identification of differentially expressed proteins by mass spectrometry in two contrasting genotypes for flooding tolerance (tolerant - TSA-792 and susceptible - TSH-774). Soil anoxia caused by flooding has led to changes in the expression pattern of genes associated with the biosynthesis of alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC) and lactate dehydrogenase (LDH) in leaves and roots of the two evaluated genotypes. Significant differences were observed between the enzyme activities of the two genotypes. Leaves and roots of the TSA-792 genotype showed higher ADH activity as compared to the TSH-774 genotype, whereas the activities of PDC and LDH have varied over the 96 h of soil flooding, being higher for TSA-792 genotype, at the initial stage, and TSH-774 genotype, at the final stage. Some of the identified proteins are those typical of the anaerobic metabolism-involved in glycolysis and alcoholic fermentation-and different proteins associated with photosynthesis, protein metabolism and oxidative stress. The ability to maintain glycolysis and induce fermentation was observed to play an important role in anoxia tolerance in cacao and may also serve to distinguish tolerant and susceptible genotypes in relation to this stressor.


Assuntos
Cacau/genética , Cacau/metabolismo , Inundações , Genótipo , Proteoma , Solo , Transcriptoma , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteômica , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA