RESUMO
The diversity of advanced genetic engineering techniques that have become available in recent years has enabled a more precise manipulation of genes and genomes. Among these, bacteriophage genomes stand out as an interesting target due to their dependence on a host for replication, which previously complicated their manipulation, and due as well to the many possible fields in which they can be used. In this review, we highlight recent applications for which genetically modified bacteriophages are being employed: as phage therapy in medicine, animal industries and agricultural settings; as a source of new antimicrobials; as biosensors for research, health and environmental purposes; and as genetic engineering tools themselves.
Assuntos
Bacteriófagos , Biotecnologia/métodos , Terapia por Fagos/métodos , Animais , Bactérias , Engenharia Genética , Genoma Viral , HumanosRESUMO
BACKGROUND: For several decades now an antagonism between Trypanosoma cruzi infection and tumor development has been detected. The molecular basis of this phenomenon remained basically unknown until our proposal that T. cruzi Calreticulin (TcCRT), an endoplasmic reticulum-resident chaperone, translocated-externalized by the parasite, may mediate at least an important part of this effect. Thus, recombinant TcCRT (rTcCRT) has important in vivo antiangiogenic and antitumor activities. However, the relevant question whether the in vivo antitumor effect of T. cruzi infection is indeed mediated by the native chaperone (nTcCRT), remains open. Herein, by using specific modified anti-rTcCRT antibodies (Abs), we have neutralized the antitumor activity of T. cruzi infection and extracts thereof, thus identifying nTcCRT as a valid mediator of this effect. METHODS: Polyclonal anti-rTcCRT F(ab')2 Ab fragments were used to reverse the capacity of rTcCRT to inhibit EAhy926 endothelial cell (EC) proliferation, as detected by BrdU uptake. Using these F(ab')2 fragments, we also challenged the capacity of nTcCRT, during T. cruzi infection, to inhibit the growth of an aggressive mammary adenocarcinoma cell line (TA3-MTXR) in mice. Moreover, we determined the capacity of anti-rTcCRT Abs to reverse the antitumor effect of an epimastigote extract (EE). Finally, the effects of these treatments on tumor histology were evaluated. RESULTS: The rTcCRT capacity to inhibit ECs proliferation was reversed by anti-rTcCRT F(ab')2 Ab fragments, thus defining them as valid probes to interfere in vivo with this important TcCRT function. Consequently, during infection, these Ab fragments also reversed the in vivo experimental mammary tumor growth. Moreover, anti-rTcCRT Abs also neutralized the antitumor effect of an EE, again identifying the chaperone protein as an important mediator of this anti mammary tumor effect. Finally, as determined by conventional histological parameters, in infected animals and in those treated with EE, less invasive tumors were observed while, as expected, treatment with F(ab')2 Ab fragments increased malignancy. CONCLUSION: We have identified translocated/externalized nTcCRT as responsible for at least an important part of the anti mammary tumor effect of the chaperone observed during experimental infections with T. cruzi.
Assuntos
Calreticulina/metabolismo , Neoplasias Mamárias Experimentais/prevenção & controle , Trypanosoma cruzi/metabolismo , Tripanossomíase/parasitologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/farmacologia , Calreticulina/antagonistas & inibidores , Calreticulina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Feminino , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/farmacologiaRESUMO
A single stress exposure facilitates memory formation through neuroplastic processes that reshape excitatory synapses in the hippocampus, probably requiring changes in extracellular matrix components. We tested the hypothesis that matrix metalloproteinase 9 (MMP-9), an enzyme that degrades components of extracellular matrix and synaptic proteins such as ß-dystroglycan (ß-DG43), changes their activity and distribution in rat hippocampus during the acute stress response. After 2.5 h of restraint stress, we found (i) increased MMP-9 levels and potential activity in whole hippocampal extracts, accompanied by ß-DG43 cleavage, and (ii) a significant enhancement of MMP-9 immunoreactivity in dendritic fields such as stratum radiatum and the molecular layer of hippocampus. After 24 h of stress, we found that (i) MMP-9 net activity rises at somatic field, i.e., stratum pyramidale and granule cell layers, and also at synaptic field, mainly stratum radiatum and the molecular layer of hippocampus, and (ii) hippocampal synaptoneurosome fractions are enriched with MMP-9, without variation of its potential enzymatic activity, in accordance with the constant level of cleaved ß-DG43. These findings indicate that stress triggers a peculiar timing response in the MMP-9 levels, net activity, and subcellular distribution in the hippocampus, suggesting its involvement in the processing of substrates during the stress response.
Assuntos
Hipocampo/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Potenciais de Ação/fisiologia , Animais , Dendritos/metabolismo , Masculino , Neurônios/metabolismo , Ratos Sprague-Dawley , Estresse Fisiológico/fisiologia , Fatores de TempoRESUMO
Chagas disease is an endemic pathology in Latin America, now emerging in developed countries, caused by the intracellular protozoan Trypanosoma cruzi, whose life cycle involves three stages: amastigotes, epimastigotes, and trypomastigotes. T. cruzi Calreticulin (TcCRT), an endoplasmic reticulum resident chaperone, translocates to the external cellular membrane, where it captures complement component C1, ficolins and MBL, thus inactivating the classical and lectin pathways. Trypomastigote-bound C1 is detected as an "eat me" signal by macrophages and promotes the infective process. Unlike infective trypomastigotes, non-infective epimastigotes either do not express or express only marginal levels of TcCRT on their external membrane. We show that epimastigotes bind exogenous rTcCRT to their cellular membrane and, in the presence of C1q, this parasite form is internalized into normal fibroblasts. On the other hand, Calreticulin (CRT)-deficient fibroblasts show impaired parasite internalization. In synthesis, CRT from both parasite and host cell origin is important in the establishment of C1q-dependent first contacts between parasites and host cells.
Assuntos
Calreticulina/imunologia , Endocitose/imunologia , Interações Hospedeiro-Parasita/imunologia , Trypanosoma cruzi/imunologia , Adjuvantes Imunológicos , Animais , Calreticulina/genética , Calreticulina/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Complemento C1q/imunologia , Complemento C1q/metabolismo , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Técnicas de Inativação de Genes , Camundongos , Ligação Proteica , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Fatores de Virulência/imunologiaRESUMO
Molluskan hemocyanins are enormous oxygen-carrier glycoproteins that show remarkable immunostimulatory properties when inoculated in mammals, such as the generation of high levels of antibodies, a strong cellular reaction, and generation of non-specific antitumor immune responses in some types of cancer, particularly for superficial bladder cancer. These proteins have the ability to bias the immune response toward a Th1 phenotype. However, despite all their current uses with beneficial clinical outcomes, a clear mechanism explaining these properties is not available. Taking into account reports of natural antibodies against the hemocyanin of the gastropod Megathura crenulata [keyhole limpet hemocyanin (KLH)] in humans as well as other vertebrate species, we report here for the first time, the presence, in sera from unimmunized healthy donors, of antibodies recognizing, in addition to KLH, two other hemocyanins from gastropods with documented immunomodulatory capacities: Fisurella latimarginata hemocyanin (FLH) and Concholepas concholepas hemocyanin (CCH). Through an ELISA screening, we found IgM and IgG antibodies reactive with these hemocyanins. When the capacity of these antibodies to bind deglycosylated hemocyanins was studied, no decreased interaction was detected. Moreover, in the case of FLH, deglycosylation increased antibody binding. We evaluated through an in vitro complement deposition assay whether these antibodies activated the classical pathway of the human complement system. The results showed that all three hemocyanins and their deglycosylated counterparts elicited this activation, mediated by C1 binding to immunoglobulins. Thus, this work contributes to the understanding on how the complement system could participate in the immunostimulatory properties of hemocyanins, through natural, complement-activating antibodies reacting with these proteins. Although a role for carbohydrates cannot be completely ruled out, in our experimental setting, glycosylation status had a limited effect. Finally, our data open possibilities for further studies leading to the design of improved hemocyanin-based research tools for diagnosis and immunotherapy.