Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 162(3): 1337-58, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23735505

RESUMO

Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis.


Assuntos
Arecaceae/genética , Ácidos Graxos/análise , Frutas/genética , Sementes/química , Sementes/genética , Proteínas de Arabidopsis/genética , Arecaceae/crescimento & desenvolvimento , Arecaceae/metabolismo , Sequência de Bases , Endosperma/genética , Endosperma/metabolismo , Ácidos Graxos/biossíntese , Frutas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Ácidos Láuricos/análise , Ácidos Láuricos/metabolismo , Lipídeos/análise , Dados de Sequência Molecular , Óleo de Palmeira , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Óleos de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
2.
BMC Plant Biol ; 12: 150, 2012 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-22920238

RESUMO

BACKGROUND: Cell separation that occurs during fleshy fruit abscission and dry fruit dehiscence facilitates seed dispersal, the final stage of plant reproductive development. While our understanding of the evolutionary context of cell separation is limited mainly to the eudicot model systems tomato and Arabidopsis, less is known about the mechanisms underlying fruit abscission in crop species, monocots in particular. The polygalacturonase (PG) multigene family encodes enzymes involved in the depolymerisation of pectin homogalacturonan within the primary cell wall and middle lamella. PG activity is commonly found in the separation layers during organ abscission and dehiscence, however, little is known about how this gene family has diverged since the separation of monocot and eudicots and the consequence of this divergence on the abscission process. RESULTS: The objective of the current study was to identify PGs responsible for the high activity previously observed in the abscission zone (AZ) during fruit shedding of the tropical monocot oil palm, and to analyze PG gene expression during oil palm fruit ripening and abscission. We identified 14 transcripts that encode PGs, all of which are expressed in the base of the oil palm fruit. The accumulation of five PG transcripts increase, four decrease and five do not change during ethylene treatments that induce cell separation. One PG transcript (EgPG4) is the most highly induced in the fruit base, with a 700-5000 fold increase during the ethylene treatment. In situ hybridization experiments indicate that the EgPG4 transcript increases preferentially in the AZ cell layers in the base of the fruit in response to ethylene prior to cell separation. CONCLUSIONS: The expression pattern of EgPG4 is consistent with the temporal and spatial requirements for cell separation to occur during oil palm fruit shedding. The sequence diversity of PGs and the complexity of their expression in the oil palm fruit tissues contrast with data from tomato, suggesting functional divergence underlying the ripening and abscission processes has occurred between these two fruit species. Furthermore, phylogenetic analysis of EgPG4 with PGs from other species suggests some conservation, but also diversification has occurred between monocots and eudicots, in particular between dry and fleshy fruit species.


Assuntos
Arecaceae/enzimologia , Arecaceae/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Poligalacturonase/genética , Arecaceae/efeitos dos fármacos , Arecaceae/crescimento & desenvolvimento , Etilenos/farmacologia , Frutas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Hibridização In Situ , Dados de Sequência Molecular , Óleo de Palmeira , Filogenia , Óleos de Plantas/metabolismo , Poligalacturonase/química , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
3.
Front Plant Sci ; 8: 603, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487710

RESUMO

The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are regulated by evolutionarily conserved molecular physiological processes.

4.
Mol Plant Pathol ; 18(6): 825-836, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27291786

RESUMO

The phytohormone jasmonic acid (JA) and its derivatives, collectively referred to as jasmonates, regulate many developmental processes, but are also involved in the response to numerous abiotic/biotic stresses. Thus far, powerful reverse genetic strategies employing perception, signalling or biosynthesis mutants have broadly contributed to our understanding of the role of JA in the plant stress response and development, as has the chemical gain-of-function approach based on exogenous application of the hormone. However, there is currently no method that allows for tightly controlled JA production in planta. By investigating the control of the JA synthesis pathway in bacteria-infected cotton (Gossypium hirsutum L.) plants, we identified a transcription factor (TF), named GhERF-IIb3, which acts as a positive regulator of the JA pathway. Expression of this well-conserved TF in cotton leaves was sufficient to produce in situ JA accumulation at physiological concentrations associated with an enhanced cotton defence response to bacterial infection.


Assuntos
Ciclopentanos/metabolismo , Gossypium/metabolismo , Gossypium/microbiologia , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Resistência à Doença/genética , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
5.
Nat Commun ; 6: 6043, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25592181

RESUMO

Activated forms of jasmonic acid (JA) are central signals coordinating plant responses to stresses, yet tools to analyse their spatial and temporal distribution are lacking. Here we describe a JA perception biosensor termed Jas9-VENUS that allows the quantification of dynamic changes in JA distribution in response to stress with high spatiotemporal sensitivity. We show that Jas9-VENUS abundance is dependent on bioactive JA isoforms, the COI1 co-receptor, a functional Jas motif and proteasome activity. We demonstrate the utility of Jas9-VENUS to analyse responses to JA in planta at a cellular scale, both quantitatively and dynamically. This included using Jas9-VENUS to determine the cotyledon-to-root JA signal velocities on wounding, revealing two distinct phases of JA activity in the root. Our results demonstrate the value of developing quantitative sensors such as Jas9-VENUS to provide high-resolution spatiotemporal data about hormone distribution in response to plant abiotic and biotic stresses.


Assuntos
Técnicas Biossensoriais/métodos , Ciclopentanos/análise , Ciclopentanos/metabolismo , Oxilipinas/análise , Oxilipinas/metabolismo , Plantas/metabolismo , Cotilédone/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA