RESUMO
To determine the kinetics of hepatitis E virus (HEV) in asymptomatic persons and to evaluate viral load doubling time and half-life, we retrospectively tested samples retained from 32 HEV RNA-positive asymptomatic blood donors in Germany. Close-meshed monitoring of viral load and seroconversion in intervals of ≈4 days provided more information about the kinetics of asymptomatic HEV infections. We determined that a typical median infection began with PCR-detectable viremia at 36 days and a maximum viral load of 2.0 × 104 IU/mL. Viremia doubled in 2.4 days and had a half-life of 1.6 days. HEV IgM started to rise on about day 33 and peaked on day 36; IgG started to rise on about day 32 and peaked on day 53. Although HEV IgG titers remained stable, IgM titers became undetectable in 40% of donors. Knowledge of the dynamics of HEV viremia is useful for assessing the risk for transfusion-transmitted hepatitis E.
Assuntos
Doadores de Sangue , Vírus da Hepatite E , Hepatite E , RNA Viral , Carga Viral , Viremia , Humanos , Hepatite E/epidemiologia , Hepatite E/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Masculino , Adulto , Imunoglobulina M/sangue , Feminino , Imunoglobulina G/sangue , Cinética , Pessoa de Meia-Idade , Infecções Assintomáticas/epidemiologia , Estudos Retrospectivos , Anticorpos Anti-Hepatite/sangue , Alemanha/epidemiologia , Adulto JovemRESUMO
In healthy adults, parvovirus B19 (PVB19) typically causes mild symptoms but can lead to severe complications in immunosuppressed individuals or those with high red blood cell turnover. Infection can occur through respiratory transmission or via transfusion, necessitating the testing of blood donations in Germany. Between 2015 and April 2024, we screened 2 105 755 blood donations for PVB19 using polymerase chain reaction. Incidence rates were calculated for three periods: pre-COVID-19 (2015-2020), during the pandemic (2020-2023), and post-COVID-19 (2023-2024). A total of 242 PVB19-positive donations were identified. In the first period, there were 101 positives out of 1 228 361 donations (incidence: 0.83/10 000). In the second period, four positives were found out of 621 222 donations (incidence: 0.06/10 000). In the third period, 137 positives were detected out of 235 088 donations (incidence: 5.35/10 000) with a striking increase of incidence between December 2023 and March 2024 (4.3-21.1/10 000 donations). Most people develop lifelong immunity after infection in childhood but the COVID-19 pandemic interventions, like masks and distancing, correlate with a decline in PVB19 infections in donors indicating an impact of hygiene measures on PVB19 infection rates.
Assuntos
Doadores de Sangue , Infecções por Parvoviridae , Parvovirus B19 Humano , Estações do Ano , Humanos , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/isolamento & purificação , Alemanha/epidemiologia , Doadores de Sangue/estatística & dados numéricos , Incidência , Adulto , Masculino , Feminino , Infecções por Parvoviridae/epidemiologia , Pessoa de Meia-Idade , COVID-19/epidemiologia , COVID-19/diagnóstico , COVID-19/virologia , COVID-19/transmissão , Adulto Jovem , Adolescente , IdosoRESUMO
BackgroundAwareness of transfusion-transmitted hepatitis E raised in recent years led to the mandatory testing of blood donations in some European countries for hepatitis E virus (HEV) RNA. However, little is known about the epidemiology of HEV infections.AimTo and describe and analyse the epidemiology of HEV infections in blood donors in Germany.MethodsData from routine testing of therapeutic blood products donated between January 2015 and December 2022 at the Uni.Blutspendedienst OWL were analysed at the Institute of Laboratory and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia. A total of 731,630 allogenic blood donations from 119,610 individual blood donors were tested for HEV RNA in minipools of 96 samples. The HEV RNA-positive donations were analysed for the presence of anti-HEV IgM and IgG. The HEV strains were genotyped and various clinical liver-specific parameters were determined.ResultsA total of 497 HEV-positive blood donations were identified, resulting in a yearly incidence of 1:1,474, from which 78.4% of the donations were RNA-only positive. Increased alanine aminotransferase activity was determined in 26.6% of HEV RNA-positive donors and was associated with the detection of IgG antibodies (1.2% anti-HEV IgM-positive, 11.9% anti-HEV IgM- and IgG-positive and 8.5% anti-HEV IgG-positive). An average incidence of 0.084-0.083% HEV RNA-positive donations in June and July in all years was observed, and a higher proportion of HEV RNA-positive men compared with women. All isolated HEV sequences corresponded to genotype 3.ConclusionOur results underline the necessity of HEV RNA screening in blood donations.
Assuntos
Hepatite E , Hepatite E/sangue , Hepatite E/epidemiologia , Alemanha/epidemiologia , Doadores de Sangue/estatística & dados numéricos , Doação de Sangue/estatística & dados numéricos , Transfusão de Sangue/estatística & dados numéricos , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , RNA , Imunoglobulina M , Imunoglobulina G , Fígado/metabolismoRESUMO
Mutations in ABCC6, an ATP-binding cassette transporter with a so far unknown substrate mainly expressed in the liver and kidney, cause pseudoxanthoma elasticum (PXE). Symptoms of PXE in patients originate from the calcification of elastic fibers in the skin, eye, and vessels. Previous studies suggested an involvement of ABCC6 in cholesterol and lipid homeostasis. The intention of this study was to examine the influence of ABCC6 deficiency during adipogenic differentiation of human bone marrow-derived stem cells (hMSCs). Induction of adipogenic differentiation goes along with significantly elevated ABCC6 gene expression in mature adipocytes. We generated an ABCC6-deficient cell culture model using clustered regulatory interspaced short palindromic repeat Cas9 (CRISPR-Cas9) system to clarify the role of ABCC6 in lipid homeostasis. The lack of ABCC6 in hMSCs does not influence gene expression of differentiation markers in adipogenesis but results in a decreased triglyceride content in cell culture medium. Protein and gene expression analysis of mature ABCC6-deficient adipocytes showed diminished intra- and extra-cellular lipolysis, release of lipids, and fatty acid neogenesis. Therefore, our results demonstrate impaired lipid trafficking in adipocytes due to ABCC6 deficiency, highlighting adipose tissue and peripheral lipid metabolism as a relevant target for uncovering systemic PXE pathogenesis.
Assuntos
Células-Tronco Mesenquimais , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Pseudoxantoma Elástico , Adipócitos/metabolismo , Colesterol/metabolismo , Homeostase , Humanos , Células-Tronco Mesenquimais/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Pseudoxantoma Elástico/metabolismoRESUMO
Systemic sclerosis (SSc) is an inflammatory fibrotic disease characterized by an excessive extracellular matrix deposition in the skin and internal organs. One fibrotic key event remains the fibroblast-to-myofibroblast differentiation that is controlled by a combination of mechanical and soluble factors, such as transforming growth factor-ß1 (TGF-ß1) and interleukin-1ß (IL-1ß). One important myofibroblast biomarker is human xylosyltransferase-I (XT-I), the initial enzyme in proteoglycan biosynthesis. Increased serum XT activity was quantified in SSc, but the underlying cellular mechanisms remain elusive. This study aims to determine the cellular basis of XT-I induction in SSc by using a myofibroblast cell culture model with SSc fibroblasts (SScF) and healthy control fibroblasts. We found that SScF exhibit a higher extracellular XT-I activity compared to control fibroblasts. This increased XT-I activity in SScF was demonstrated to be mediated by an enhanced autocrine TGF-ß signaling. Upon IL-1ß treatment, SScF showed an increased mRNA expression level of XT-I and TGF-ß receptor II (TGFBR2), while healthy control fibroblasts did not, pointing towards an involvement of IL-1ß in the cytokine-mediated XT-I induction. Performing microRNA (miRNA) inhibition experiments in the presence of TGF-ß1, we showed that the pro-fibrotic effect of IL-1ß may be mediated by a miRNA-21/TGF-ß receptor II axis, enhancing the autocrine TGF-ß signaling in SScF. Taken together, this study improves the mechanistic understanding of fibrotic XT-I induction in SSc by identifying a hitherto unknown IL-1ß-mediated miRNA-21/TGFBR2 regulation contributing to the enhanced XYLT1 expression and XT-I activity in SScF.
Assuntos
Citocinas/farmacologia , Fibroblastos/enzimologia , Fibroblastos/patologia , Pentosiltransferases/biossíntese , Escleroderma Sistêmico/enzimologia , Pele/patologia , Indução Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pentosiltransferases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Fator de Crescimento Transformador beta1/farmacologia , UDP Xilose-Proteína XilosiltransferaseRESUMO
Pseudoxanthoma elasticum (PXE) is a rare autosomal-recessive disorder that is mainly caused by mutations in the ATP-binding cassette sub-family C member 6 (ABCC6) gene. Clinically PXE is characterized by a loss of skin elasticity, arteriosclerosis or visual impairments. It also shares some molecular characteristics with known premature aging syndromes like the Hutchinson-Gilford progeria syndrome (HGPS). However, little is known about accelerated aging processes, especially on a cellular level for PXE now. Therefore, this study was performed to reveal a potential connection between premature cellular aging and PXE pathogenesis by analyzing cellular senescence, a corresponding secretory phenotype and relevant factors of the cell cycle control in primary human dermal fibroblasts of PXE patients. Here, we could show an increased senescence-associated ß-galactosidase (SA-ß-Gal) activity as well as an increased expression of proinflammatory factors of a senescence-associated secretory phenotype (SASP) like interleukin 6 (IL6) and monocyte chemoattractant protein-1 (MCP1). We further observed an increased gene expression of the cyclin-dependent kinase inhibitor (CDKI) p21, but no simultaneous induction of p53 gene expression. These data indicate that PXE is associated with premature cellular senescence, which is possibly triggered by a p53-independent p21-mediated mechanism leading to a proinflammatory secretory phenotype.
Assuntos
Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Derme/citologia , Fibroblastos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Pseudoxantoma Elástico/etiologia , Pseudoxantoma Elástico/metabolismo , Biomarcadores , Inibidor de Quinase Dependente de Ciclina p27/genética , Expressão Gênica , Humanos , Lamina Tipo B/genética , Mutação , Fenótipo , Pseudoxantoma Elástico/patologia , RNA MensageiroRESUMO
Ectopic calcification and dysregulated extracellular matrix remodeling are prominent hallmarks of the complex heterogenous pathobiochemistry of pseudoxanthoma elasticum (PXE). The disease arises from mutations in ABCC6, an ATP-binding cassette transporter expressed predominantly in the liver. Neither its substrate nor the mechanisms by which it contributes to PXE are completely understood. The fibroblasts isolated from PXE patients and Abcc6-/- mice were subjected to RNA sequencing. A group of matrix metalloproteinases (MMPs) clustering on human chromosome 11q21-23, respectively, murine chromosome 9, was found to be overexpressed. A real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescent staining confirmed these findings. The induction of calcification by CaCl2 resulted in the elevated expression of selected MMPs. On this basis, the influence of the MMP inhibitor Marimastat (BB-2516) on calcification was assessed. PXE fibroblasts (PXEFs) exhibited a pro-calcification phenotype basally. PXEF and normal human dermal fibroblasts responded with calcium deposit accumulation and the induced expression of osteopontin to the addition of Marimastat to the calcifying medium. The raised MMP expression in PXEFs and during cultivation with calcium indicates a correlation of ECM remodeling and ectopic calcification in PXE pathobiochemistry. We assume that MMPs make elastic fibers accessible to controlled, potentially osteopontin-dependent calcium deposition under calcifying conditions.
Assuntos
Calcinose , Pseudoxantoma Elástico , Humanos , Camundongos , Animais , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/metabolismo , Osteopontina/metabolismo , Cálcio/metabolismo , Calcinose/metabolismo , Fenótipo , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genéticaRESUMO
Previous studies revealed a link between inflammation and overactivation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in syndromes associated with aging. Pseudoxanthoma elasticum (PXE), a rare autosomal-recessive disorder, arises from mutations in ATP-binding cassette subfamily C member 6 (ABCC6). On a molecular level, PXE shares similarities with Hutchinson-Gilford progeria syndrome, such as increased activity of senescence-associated- beta-galactosidase or high expression of inflammatory factors. Thus, this study's aim was the evaluation of activated STAT3 and the influence of JAK1/2-inhibitor baricitinib (BA) on inflammatory processes such as the complement system in PXE. Analysis of activation of STAT3 was performed by immunofluorescence and Western blot, while inflammatory processes and complement system factors were determined based on mRNA expression and protein level. Our results assume overactivation of JAK/STAT3 signaling, increased expression levels of several complement factors and high C3 protein concentration in the sera of PXE patients. Supplementation with BA reduces JAK/STAT3 activation and partly reduces inflammation as well as the gene expression of complement factors belonging to the C1 complex and C3 convertase in PXE fibroblasts. Our results indicate a link between JAK/STAT3 signaling and complement activation contributing to the proinflammatory phenotype in PXE fibroblasts.
RESUMO
BACKGROUND: Pseudoxanthoma elasticum (PXE) is a rare autosomal recessive disorder caused by mutations in the ATP-binding cassette sub-family C member 6 (ABCC6) gene. Patients with PXE show molecular and clinical characteristics of known premature aging syndromes, such as Hutchinson-Gilford progeria syndrome (HGPS). Nevertheless, PXE has only barely been discussed against the background of premature aging, although a detailed characterization of aging processes in PXE could contribute to a better understanding of its pathogenesis. Thus, this study was performed to evaluate whether relevant factors which are known to play a role in accelerated aging processes in HGPS pathogenesis are also dysregulated in PXE. METHODS: Primary human dermal fibroblasts from healthy donors (n = 3) and PXE patients (n = 3) and were cultivated under different culture conditions as our previous studies point towards effects of nutrient depletion on PXE phenotype. Gene expression of lamin A, lamin C, nucleolin, farnesyltransferase and zinc metallopeptidase STE24 were determined by quantitative real-time polymerase chain reaction. Additionally, protein levels of lamin A, C and nucleolin were evaluated by immunofluorescence and the telomere length was analyzed. RESULTS: We could show a significant decrease of lamin A and C gene expression in PXE fibroblasts under nutrient depletion compared to controls. The gene expression of progerin and farnesyltransferase showed a significant increase in PXE fibroblasts when cultivated in 10% fetal calf serum (FCS) compared to controls. Immunofluorescence microscopy of lamin A/C and nucleolin and mRNA expression of zinc metallopeptidase STE24 and nucleolin showed no significant changes in any case. The determination of the relative telomere length showed significantly longer telomeres for PXE fibroblasts compared to controls when cultivated in 10% FCS. CONCLUSIONS: These data indicate that PXE fibroblasts possibly undergo a kind of senescence which is independent of telomere damage and not triggered by defects of the nuclear envelope or nucleoli deformation.
Assuntos
Senilidade Prematura , Progéria , Pseudoxantoma Elástico , Humanos , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Senilidade Prematura/patologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/metabolismo , Pseudoxantoma Elástico/patologia , Farnesiltranstransferase/metabolismo , Metaloproteases/metabolismo , Zinco/metabolismo , Fibroblastos/metabolismoRESUMO
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder caused by mutations in the ATP-binding cassette sub-family C member 6 gene. Our previous studies revealed that PXE might be associated with premature aging. Treatment with statins showed positive effects not only for PXE but also for other diseases associated with premature aging like Hutchinson-Gilford progeria syndrome. Nevertheless, the molecular mechanisms in the case of PXE remain unclear. Thus, this study was performed to evaluate the efficiency of atorvastatin by analyzing key characteristics of the PXE phenotype in primary human dermal fibroblasts of PXE patients. Our data indicate that an atorvastatin treatment has a positive effect, especially on factors associated with cholesterol biosynthesis and prenylation processes, whereas the effect on age- and calcification-related factors was less pronounced.
Assuntos
Atorvastatina/uso terapêutico , Expressão Gênica/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pseudoxantoma Elástico/tratamento farmacológico , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , Pessoa de Meia-IdadeRESUMO
Fibrosis is a fundamental feature of systemic sclerosis (SSc) and is characterized by excessive accumulation of extracellular matrix components like proteoglycans (PG) or collagens in skin and internal organs. Serum analysis from SSc patients showed an increase in the enzyme activity of xylosyltransferase (XT), the initial enzyme in PG biosynthesis. There are two distinct XT isoforms-XT-I and XT-II-in humans, but until now only XT-I is associated with fibrotic remodelling for an unknown reason. The aim of this study was to identify new XT mediators and clarify the underlying mechanisms, in view of developing putative therapeutic anti-fibrotic interventions in the future. Therefore, we used different cytokines and growth factors, small molecule inhibitors as well as small interfering RNAs, and assessed the cellular XT activity and XYLT1 expression in primary human dermal fibroblasts by radiochemical activity assays and qRT-PCR. We identified a new function of activin A as a regulator of XYLT1 mRNA expression and XT activity. While the activin A-induced XT-I increase was found to be mediated by activin A receptor type 1B, MAPK and Smad pathways, the activin A treatment did not alter the XYLT2 expression. Furthermore, we observed a reciprocal regulation of XYLT1 and XYLT2 transcription after inhibition of the activin A pathway components. These results improve the understanding of the differential expression regulation of XYLT isoforms under pathological fibroproliferative conditions.