RESUMO
Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components.
Assuntos
Agropyron , Triticum , Agropyron/genética , Desidratação , Secas , Genes de Plantas , Humanos , Triticum/genética , ÁguaRESUMO
Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat.
Assuntos
Adaptação Fisiológica/genética , Agropyron/genética , Secas , Endogamia , Característica Quantitativa Herdável , Triticum/genética , Triticum/fisiologia , Agropyron/efeitos dos fármacos , Biomassa , Brachypodium/efeitos dos fármacos , Brachypodium/genética , Brassinosteroides/farmacologia , Dióxido de Carbono/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Genótipo , Fenótipo , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Polimorfismo Genético , Plântula/efeitos dos fármacos , Plântula/fisiologia , Sintenia/genética , Triticum/efeitos dos fármacos , ÁguaRESUMO
The accumulation of anthropogenic heavy metals in soil is a major form of pollution. Such potentially toxic elements are nonbiodegradable and persist for many years as threats to human and environmental health. Traditional forms of remediation are costly and potentially damaging to the land. An alternative strategy is phytoremediation, where plants are used to capture metals from the environment. Industrial hemp (Cannabis sativa) is a promising candidate for phytoremediation. Hemp has deep roots and is tolerant to the accumulation of different metals. In addition, the crop biomass has many potential commercial uses after harvesting is completed. Furthermore, the recent availability of an annotated genome sequence provides a powerful tool for the bioengineering of C. sativa for better phytoremediation.
RESUMO
We report functional genomics studies of a CYP74 rubber particle protein from Parthenium argentatum, commonly called guayule. Previously identified as an allene oxide synthase (AOS), this CYP74 constitutes the most abundant protein found in guayule rubber particles. Transgenic guayule lines with AOS gene expression down-regulated by RNAi (AOSi) exhibited strong phenotypes that included agricultural traits conducive to enhancing rubber yield. AOSi lines had higher leaf and stem biomass, thicker stembark tissues, increased stem branching and improved net photosynthetic rate. Importantly, the rubber content was significantly increased in AOSi lines compared to the wild-type (WT), vector control and AOS overexpressing (AOSoe) lines, when grown in controlled environments both in tissue-culture media and in greenhouse/growth chambers. Rubber particles from AOSi plants consistently had less AOS particle-associated protein, and lower activity (for conversion of 13-HPOT to allene oxide). Yet plants with downregulated AOS showed higher rubber transferase enzyme activity. The increase in biomass in AOSi lines was associated with not only increases in the rate of photosynthesis and non-photochemical quenching (NPQ), in the cold, but also in the content of the phytohormone SA, along with a decrease in JA, GAs, and ABA. The increase in biosynthetic activity and rubber content could further result from the negative regulation of AOS expression by high levels of salicylic acid in AOSi lines and when introduced exogenously. It is apparent that AOS in guayule plays a pivotal role in rubber production and plant growth.