Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 112022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129436

RESUMO

Aging individuals exhibit a pervasive decline in adaptive immune function, with important implications for health and lifespan. Previous studies have found a pervasive loss of immune-repertoire diversity in human peripheral blood during aging; however, little is known about repertoire aging in other immune compartments, or in species other than humans. Here, we perform the first study of immune-repertoire aging in an emerging model of vertebrate aging, the African turquoise killifish (Nothobranchius furzeri). Despite their extremely short lifespans, these killifish exhibit complex and individualized heavy-chain repertoires, with a generative process capable of producing millions of distinct productive sequences. Whole-body killifish repertoires decline rapidly in within-individual diversity with age, while between-individual variability increases. Large, expanded B-cell clones exhibit far greater diversity loss with age than small clones, suggesting important differences in how age affects different B-cell populations. The immune repertoires of isolated intestinal samples exhibit especially dramatic age-related diversity loss, related to an elevated prevalence of expanded clones. Lower intestinal repertoire diversity was also associated with transcriptomic signatures of reduced B-cell activity, supporting a functional role for diversity changes in killifish immunosenescence. Our results highlight important differences in systemic vs. organ-specific aging dynamics in the adaptive immune system.


Assuntos
Diversidade de Anticorpos/imunologia , Fundulidae/imunologia , Imunossenescência/imunologia , Imunidade Adaptativa/imunologia , Envelhecimento/imunologia , Animais , Linfócitos B/imunologia , Humanos , Longevidade/imunologia , Microbiota/imunologia , Modelos Animais
2.
mBio ; 13(3): e0282521, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420486

RESUMO

Leaves are primarily responsible for the plant's photosynthetic activity. Thus, changes in the leaf microbiota, which includes deleterious and beneficial microbes, can have far-reaching effects on plant fitness and productivity. Identifying the processes and microorganisms that drive these changes over a plant's lifetime is, therefore, crucial. In this study, we analyzed the temporal dynamics in the leaf microbiome of Arabidopsis thaliana, integrating changes in both composition and microbe-microbe interactions via the study of microbial networks. Field-grown Arabidopsis were used to monitor leaf bacterial, fungal and oomycete communities throughout the plant's natural growing season (extending from November to March) over three consecutive years. Our results revealed the existence of conserved temporal patterns, with microbial communities and networks going through a stabilization phase of decreased diversity and variability at the beginning of the plant's growing season. Despite a high turnover in these communities, we identified 19 "core" taxa persisting on Arabidopsis leaves across time and plant generations. With the hypothesis these microbes could be playing key roles in the structuring of leaf microbial communities, we conducted a time-informed microbial network analysis which showed core taxa are not necessarily highly connected network "hubs," and "hubs" alternate with time. Our study shows that leaf microbial communities exhibit reproducible dynamics and patterns, suggesting the potential of using our understanding of temporal trajectories in microbial community composition to design experiments aimed at driving these communities toward desired states. IMPORTANCE Utilizing plant microbiota to promote plant growth and plant health is key to more environmentally friendly agriculture. A major bottleneck in the engineering of plant-beneficial microbial communities is the low persistence of applied microbes under filed conditions, especially considering plant leaves. Indeed, although many leaf-associated microorganisms have the potential to promote plant growth and protect plants from pathogens, few of them are able to survive and thrive over time. In our study, we could show that leaf microbial communities are very variable at the beginning of the plant growing season but become more and more similar and less variable as the season progresses. We further identify a cohort of 19 "core" microbes, systematically present on plant leaves that would make these microbes exceptional candidates for future agricultural applications.


Assuntos
Arabidopsis , Microbiota , Arabidopsis/microbiologia , Bactérias , Humanos , Folhas de Planta/microbiologia , Estações do Ano , Microbiologia do Solo
3.
Nat Plants ; 5(2): 184-193, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30737513

RESUMO

Eukaryotic mRNAs frequently contain upstream open reading frames (uORFs), encoding small peptides that may control translation of the main ORF (mORF). Here, we report the characterization of a distinct bicistronic transcript in Arabidopsis. We analysed loss-of-function phenotypes of the inorganic polyphosphatase TRIPHOSPHATE TUNNEL METALLOENZYME 3 (AtTTM3), and found that catalytically inactive versions of the enzyme could fully complement embryo and growth-related phenotypes. We could rationalize these puzzling findings by characterizing a uORF in the AtTTM3 locus encoding CELL DIVISION CYCLE PROTEIN 26 (CDC26), an orthologue of the cell cycle regulator. We demonstrate that AtCDC26 is part of the plant anaphase promoting complex/cyclosome (APC/C), regulates accumulation of APC/C target proteins and controls cell division, growth and embryo development. AtCDC26 and AtTTM3 are translated from a single transcript conserved across the plant lineage. While there is no apparent biochemical connection between the two gene products, AtTTM3 coordinates AtCDC26 translation by recruiting the transcript into polysomes. Our work highlights that uORFs may encode functional proteins in plant genomes.


Assuntos
Hidrolases Anidrido Ácido/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regiões 5' não Traduzidas , Hidrolases Anidrido Ácido/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Fases de Leitura Aberta , Plantas Geneticamente Modificadas , Polirribossomos/genética , Polirribossomos/metabolismo
4.
Front Plant Sci ; 7: 820, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379119

RESUMO

Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche dominance. Adaptation to host immune responses while maintaining a partially active host immunity seems advantageous against competitors. We suggest a model for future research that considers not only host-microbe but in addition microbe-microbe and microbe-host environment factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA