Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Infect Dis ; 229(2): 485-492, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37856283

RESUMO

BACKGROUND: Universities returned to in-person learning in 2021 while SARS-CoV-2 spread remained high. At the time, it was not clear whether in-person learning would be a source of disease spread. METHODS: We combined surveillance testing, universal contact tracing, and viral genome sequencing to quantify introductions and identify likely on-campus spread. RESULTS: Ninety-one percent of viral genotypes occurred once, indicating no follow-on transmission. Less than 5% of introductions resulted in >3 cases, with 2 notable exceptions of 40 and 47 cases. Both partially overlapped with outbreaks defined by contact tracing. In both cases, viral genomics eliminated over half the epidemiologically linked cases but added an equivalent or greater number of individuals to the transmission cluster. CONCLUSIONS: Public health interventions prevented within-university transmission for most SARS-CoV-2 introductions, with only 2 major outbreaks being identified January to May 2021. The genetically linked cases overlap with outbreaks identified by contact tracing; however, they persisted in the university population for fewer days and rounds of transmission than estimated via contact tracing. This underscores the effectiveness of test-trace-isolate strategies in controlling undetected spread of emerging respiratory infectious diseases. These approaches limit follow-on transmission in both outside-in and internal transmission conditions.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Universidades , SARS-CoV-2/genética , Busca de Comunicante/métodos , Surtos de Doenças/prevenção & controle
2.
Clin Infect Dis ; 76(3): e400-e408, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616119

RESUMO

BACKGROUND: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible in vaccinated and unvaccinated populations. The dynamics that govern its establishment and propensity toward fixation (reaching 100% frequency in the SARS-CoV-2 population) in communities remain unknown. Here, we describe the dynamics of Omicron at 3 institutions of higher education (IHEs) in the greater Boston area. METHODS: We use diagnostic and variant-specifying molecular assays and epidemiological analytical approaches to describe the rapid dominance of Omicron following its introduction into 3 IHEs with asymptomatic surveillance programs. RESULTS: We show that the establishment of Omicron at IHEs precedes that of the state and region and that the time to fixation is shorter at IHEs (9.5-12.5 days) than in the state (14.8 days) or region. We show that the trajectory of Omicron fixation among university employees resembles that of students, with a 2- to 3-day delay. Finally, we compare cycle threshold values in Omicron vs Delta variant cases on college campuses and identify lower viral loads among college affiliates who harbor Omicron infections. CONCLUSIONS: We document the rapid takeover of the Omicron variant at IHEs, reaching near-fixation within the span of 9.5-12.5 days despite lower viral loads, on average, than the previously dominant Delta variant. These findings highlight the transmissibility of Omicron, its propensity to rapidly dominate small populations, and the ability of robust asymptomatic surveillance programs to offer early insights into the dynamics of pathogen arrival and spread.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Universidades , Boston
3.
Int J Infect Dis ; 114: 62-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34757200

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) sublineage B.1.617.2 or Delta, a variant that began circulating in India and is becoming dominant in the USA, has been responsible for significant morbidity and mortality. In May 2021, the Delta variant was upgraded to a variant of concern by international authorities. This article reports a cluster of SARS-CoV-2 Delta cases detected in Boston, Massachusetts, in May 2021 involving a recent traveller from India and subsequent transmission to two of three close contacts. All three close contacts experienced the same primary exposure events but differed in vaccination status. The two close contacts that eventually tested positive were unvaccinated. The other close contact had received one dose of the BNT162b (Pfizer-BioNTech) vaccine prior to exposure, and received their second dose 2 days after exposure. This case series illustrates the effectiveness of partial vaccination in blocking transmission of the Delta variant to vaccinated individuals under circumstances where the probability of transmission for unvaccinated individuals is high.


Assuntos
COVID-19 , Vacinas , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
4.
JAMA Netw Open ; 5(2): e220088, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35212750

RESUMO

Importance: Optimal quarantine length for COVID-19 infection is unclear, in part owing to limited empirical data. Objective: To assess postquarantine transmission risk for various quarantine lengths and potential associations between quarantine strictness and transmission risk. Design, Setting, and Participants: Retrospective cohort study in 4 US universities from September 2020 to February 2021, including 3641 university students and staff who were identified as close contacts to individuals who tested positive for SARS-CoV-2 infection. Individuals were tested throughout the 10 to 14-day quarantine, and follow-up testing continued at least weekly throughout the 2020-2021 academic year. Exposures: Strict quarantine, including designated housing with a private room, private bathroom, and meal delivery, vs nonstrict, which potentially included interactions with household members. Main Outcomes and Measures: Dates of last known exposure, last negative test result, and first positive test result during quarantine. Results: This study included 301 quarantined university students and staff who tested SARS-CoV-2-positive (of 3641 quarantined total). These 301 individuals had a median (IQR) age of 22.0 (20.0-25.0) years; 131 (43.5%) identified as female; and 20 (6.6%) were staff. Of the 287 self-reporting race and ethnicity according to university-defined classifications, 21 (7.3%) were African American or Black, 60 (20.9%) Asian, 17 (5.9%) Hispanic or Latinx, 174 (60.6%) White, and 15 (5.2%) other (including multiracial and/or multiethnic). Of the 301 participants, 40 (13.3%; 95% CI, 9.9%-17.6%) had negative test results and were asymptomatic on day 7 compared with 15 (4.9%; 95% CI, 3.0%-8.1%) and 4 (1.4%; 95% CI, 0.4%-3.5%) on days 10 and 14, respectively. Individuals in strict quarantine tested positive less frequently than those in nonstrict quarantine (10% vs 12%; P = .04). Conclusions and Relevance: To maintain the 5% transmission risk used as the basis for US Centers for Disease Control and Prevention's 7-day test-based quarantine guidance, our data suggest that quarantine with quantitative polymerase chain reaction testing 1 day before intended release should be 10 days for nonstrict quarantine and 8 days for strict quarantine, as ongoing exposure during quarantine may be associated with the higher rate of positive test results following nonstrict quarantine.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Quarentena/estatística & dados numéricos , Adulto , Feminino , Humanos , Masculino , Estudos Retrospectivos , Estudantes/estatística & dados numéricos , Universidades , Adulto Jovem
5.
iScience ; 25(11): 105337, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36246573

RESUMO

Contact tracing and genomic data, approaches often used separately, have both been important tools in understanding the nature of SARS-CoV-2 transmission. Linked analysis of contact tracing and sequence relatedness of SARS-CoV-2 genomes from a regularly sampled university environment were used to build a multilevel transmission tracing and confirmation system to monitor and understand transmission on campus. Our investigation of an 18-person cluster stemming from an athletic team highlighted the importance of linking contact tracing and genomic analysis. Through these findings, it is suggestive that certain safety protocols in the athletic practice setting reduced transmission. The linking of traditional contact tracing with rapid-return genomic information is an effective approach for differentiating between multiple plausible transmission scenarios and informing subsequent public health protocols to limit disease spread in a university environment.

6.
JAMA Netw Open ; 5(8): e2225430, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930286

RESUMO

Importance: SARS-CoV-2, the causative agent of COVID-19, has displayed person-to-person transmission in a variety of indoor situations. This potential for robust transmission has posed significant challenges and concerns for day-to-day activities of colleges and universities where indoor learning is a focus for students, faculty, and staff. Objective: To assess whether in-class instruction without any physical distancing, but with other public health mitigation strategies, is a risk for driving SARS-CoV-2 transmission. Design, Setting, and Participants: This cohort study examined the evidence for SARS-CoV-2 transmission on a large urban US university campus using contact tracing, class attendance, and whole genome sequencing during the 2021 fall semester. Eligible participants were on-campus and off-campus individuals involved in campus activities. Data were analyzed between September and December 2021. Exposures: Participation in class and work activities on a campus with mandated vaccination and indoor masking but that was otherwise fully open without physical distancing during a time of ongoing transmission of SARS-CoV-2, both at the university and in the surrounding counties. Main Outcomes and Measures: Likelihood of in-class infection was assessed by measuring the genetic distance between all potential in-class transmission pairings using polymerase chain reaction testing. Results: More than 600 000 polymerase chain reaction tests were conducted throughout the semester, with 896 tests (0.1%) showing detectable SARS-CoV-2; there were over 850 cases of SARS-CoV-2 infection identified through weekly surveillance testing of all students and faculty on campus during the fall 2021 semester. The rolling mean average of positive tests ranged between 4 and 27 daily cases. Of more than 140 000 in-person class events and a total student population of 33 000 between graduate and undergraduate students, only 9 instances of potential in-class transmission were identified, accounting for 0.0045% of all classroom meetings. Conclusions and Relevance: In this cohort study, the data suggested that under robust transmission abatement strategies, in-class instruction was not an appreciable source of disease transmission.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Estudos de Coortes , Genômica , Humanos , Saúde Pública , SARS-CoV-2/genética , Universidades
7.
PLoS One ; 17(7): e0270694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830378

RESUMO

At our university based high throughput screening program, we test all members of our community weekly using RT-qPCR. RT-qPCR cycle threshold (CT) values are inversely proportional to the amount of viral RNA in a sample and are a proxy for viral load. We hypothesized that CT values would be higher, and thus the viral loads at the time of diagnosis would be lower, in individuals who were infected with the virus but remained asymptomatic throughout the course of the infection. We collected the N1 and N2 target gene CT values from 1633 SARS-CoV-2 positive RT-qPCR tests of individuals sampled between August 7, 2020, and March 18, 2021, at the BU Clinical Testing Laboratory. We matched this data with symptom reporting data from our clinical team. We found that asymptomatic patients had CT values significantly higher than symptomatic individuals on the day of diagnosis. Symptoms were followed by the clinical team for 10 days post the first positive test. Within the entire population, 78.1% experienced at least one symptom during surveillance by the clinical team (n = 1276/1633). Of those experiencing symptoms, the most common symptoms were nasal congestion (73%, n = 932/1276), cough (60.0%, n = 761/1276), fatigue (59.0%, n = 753/1276), and sore throat (53.1%, n = 678/1276). The least common symptoms were diarrhea (12.5%, n = 160/1276), dyspnea on exertion (DOE) (6.9%, n = 88/1276), foot or skin changes (including rash) (4.2%, n = 53/1276), and vomiting (2.1%, n = 27/1276). Presymptomatic individuals, those who were not symptomatic on the day of diagnosis but became symptomatic over the following 10 days, had CT values higher for both N1 (median = 27.1, IQR 20.2-32.9) and N2 (median = 26.6, IQR 20.1-32.8) than the symptomatic group N1 (median = 21.8, IQR 17.2-29.4) and N2 (median = 21.4, IQR 17.3-28.9) but lower than the asymptomatic group N1 (median = 29.9, IQR 23.6-35.5) and N2 (median = 30.0, IQR 23.1-35.7). This study supports the hypothesis that viral load in the anterior nares on the day of diagnosis is a measure of disease intensity at that time.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , SARS-CoV-2/genética , Tomografia Computadorizada por Raios X , Universidades , Carga Viral
8.
Cell Rep Methods ; 1(1): 100005, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34235497

RESUMO

Asymptomatic surveillance testing together with COVID-19-related research can lead to positive SARS-CoV-2 tests resulting not from true infections, but non-infectious, non-hazardous by-products of research (amplicons). Amplicons can be widespread and persistent in lab environments and can be difficult to distinguish for true infections. We discuss prevention and mitigation strategies.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Laboratórios , Teste para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA