Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Am J Respir Cell Mol Biol ; 69(5): 570-583, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37343939

RESUMO

Pulmonary hypertension (PH) is a heterogeneous and life-threatening cardiopulmonary disorder in which mitochondrial dysfunction is believed to drive pathogenesis, although the underlying mechanisms remain unclear. To determine if abnormal SIRT3 (sirtuin 3) activity is related to mitochondrial dysfunction in adventitial fibroblasts from patients with idiopathic pulmonary arterial hypertension (IPAH) and hypoxic PH calves (PH-Fibs) and whether SIRT3 could be a potential therapeutic target to improve mitochondrial function, SIRT3 concentrations in control fibroblasts, PH-Fibs, and lung tissues were determined using quantitative real-time PCR and western blot. SIRT3 deacetylase activity in cells and lung tissues was determined using western blot, immunohistochemistry staining, and immunoprecipitation. Glycolysis and mitochondrial function in fibroblasts were measured using respiratory analysis and fluorescence-lifetime imaging microscopy. The effects of restoring SIRT3 activity (by overexpression of SIRT3 with plasmid, activation SIRT3 with honokiol, and supplementation with the SIRT3 cofactor nicotinamide adenine dinucleotide [NAD+]) on mitochondrial protein acetylation, mitochondrial function, cell proliferation, and gene expression in PH-Fibs were also investigated. We found that SIRT3 concentrations were decreased in PH-Fibs and PH lung tissues, and its cofactor, NAD+, was also decreased in PH-Fibs. Increased acetylation in overall mitochondrial proteins and SIRT3-specific targets (MPC1 [mitochondrial pyruvate carrier 1] and MnSOD2 [mitochondrial superoxide dismutase]), as well as decreased MnSOD2 activity, was identified in PH-Fibs and PH lung tissues. Normalization of SIRT3 activity, by increasing its expression with plasmid or with honokiol and supplementation with its cofactor NAD+, reduced mitochondrial protein acetylation, improved mitochondrial function, inhibited proliferation, and induced apoptosis in PH-Fibs. Thus, our study demonstrated that restoration of SIRT3 activity in PH-Fibs can reduce mitochondrial protein acetylation and restore mitochondrial function and PH-Fib phenotype in PH.


Assuntos
Hipertensão Pulmonar , Sirtuína 3 , Humanos , Animais , Bovinos , Hipertensão Pulmonar/patologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fibroblastos/metabolismo
2.
Circulation ; 136(25): 2468-2485, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28972001

RESUMO

BACKGROUND: An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS: Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS: We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1ß expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS: In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Hipertensão Pulmonar/patologia , MicroRNAs/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Piruvato Quinase/metabolismo , Processamento Alternativo , Animais , Antagomirs/metabolismo , Bovinos , Proliferação de Células , Endotélio Vascular/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glicólise , Ribonucleoproteínas Nucleares Heterogêneas/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Hipertensão Pulmonar/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Naftoquinonas/farmacologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/genética , Interferência de RNA
3.
Molecules ; 23(6)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921789

RESUMO

Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet ß-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased ß-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by ß-cells, leads to an inevitable failure of pancreatic ß-cells.


Assuntos
Ácidos Graxos/metabolismo , Hiperinsulinismo , Resistência à Insulina , Células Secretoras de Insulina , Insulina/metabolismo , Estresse Oxidativo , Animais , Humanos , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia
4.
Circulation ; 134(15): 1105-1121, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27562971

RESUMO

BACKGROUND: Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1). METHODS: RNA sequencing, quantitative polymerase chain reaction,13C-nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry-based metabolomics, and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD+ ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice. RESULTS: We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD+ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated proliferation, and suppressed macrophage numbers and remodeling in the distal pulmonary vasculature. CONCLUSIONS: CtBP1 is a critical factor linking changes in cell metabolism to cell phenotype in hypoxic and other forms of PH and a therapeutic target.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Fibroblastos/metabolismo , Hipertensão Pulmonar/metabolismo , Túnica Adventícia/metabolismo , Túnica Adventícia/patologia , Oxirredutases do Álcool/genética , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/patologia , Fibroblastos/patologia , Humanos , Hipertensão Pulmonar/patologia , Camundongos , Fenótipo
5.
FASEB J ; 30(5): 1941-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26887443

RESUMO

The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane ß-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-ß indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Spacek, T., Dlasková, A., Smolková, K., Spacková, J., Tauber, J., Strádalová, V., Malínský, J., Lessard, M., Bewersdorf, J., Jezek, P. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.


Assuntos
Complexos de ATP Sintetase/metabolismo , Adaptação Fisiológica/fisiologia , Trifosfato de Adenosina/biossíntese , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Oxigênio , Regulação para Baixo , Regulação da Expressão Gênica/fisiologia , Células Hep G2 , Humanos , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Complexos Multiproteicos/fisiologia , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas
6.
Adv Exp Med Biol ; 967: 241-260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29047090

RESUMO

Pulmonary hypertension is a complex disease of the pulmonary vasculature, which in severe cases terminates in right heart failure. Complex remodeling of pulmonary arteries comprises the central issue of its pathology. This includes extensive proliferation, apoptotic resistance and inflammation. As such, the molecular and cellular features of pulmonary hypertension resemble hallmark characteristics of cancer cell behavior. The vascular remodeling derives from significant metabolic changes in resident cells, which we describe in detail. It affects not only cells of pulmonary artery wall, but also its immediate microenvironment involving cells of immune system (i.e., macrophages). Thus aberrant metabolism constitutes principle component of the cancer-like theory of pulmonary hypertension. The metabolic changes in pulmonary artery cells resemble the cancer associated Warburg effect, involving incomplete glucose oxidation through aerobic glycolysis with depressed mitochondrial catabolism enabling the fueling of anabolic reactions with amino acids, nucleotides and lipids to sustain proliferation. Macrophages also undergo overlapping but distinct metabolic reprogramming inducing specific activation or polarization states that enable their participation in the vascular remodeling process. Such metabolic synergy drives chronic inflammation further contributing to remodeling. Enhanced glycolytic flux together with suppressed mitochondrial bioenergetics promotes the accumulation of reducing equivalents, NAD(P)H. We discuss the enzymes and reactions involved. The reducing equivalents modulate the regulation of proteins using NAD(P)H as the transcriptional co-repressor C-terminal binding protein 1 cofactor and significantly impact redox status (through GSH, NAD(P)H oxidases, etc.), which together act to control the phenotype of the cells of pulmonary arteries. The altered mitochondrial metabolism changes its redox poise, which together with enhanced NAD(P)H oxidase activity and reduced enzymatic antioxidant activity promotes a pro-oxidative cellular status. Herein we discuss all described metabolic changes along with resultant alterations in redox status, which result in excessive proliferation, apoptotic resistance, and inflammation, further leading to pulmonary arterial wall remodeling and thus establishing pulmonary artery hypertension pathology.


Assuntos
Metabolismo Energético , Hipertensão Pulmonar/metabolismo , Transdução de Sinais , Animais , Glicólise , Humanos , Hipertensão Pulmonar/fisiopatologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Remodelação Vascular
7.
Am J Respir Cell Mol Biol ; 55(1): 47-57, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26699943

RESUMO

Remodeling of the distal pulmonary artery wall is a characteristic feature of pulmonary hypertension (PH). In hypoxic PH, the most substantial pathologic changes occur in the adventitia. Here, there is marked fibroblast proliferation and profound macrophage accumulation. These PH fibroblasts (PH-Fibs) maintain a hyperproliferative, apoptotic-resistant, and proinflammatory phenotype in ex vivo culture. Considering that a similar phenotype is observed in cancer cells, where it has been associated, at least in part, with specific alterations in mitochondrial metabolism, we sought to define the state of mitochondrial metabolism in PH-Fibs. In PH-Fibs, pyruvate dehydrogenase was markedly inhibited, resulting in metabolism of pyruvate to lactate, thus consistent with a Warburg-like phenotype. In addition, mitochondrial bioenergetics were suppressed and mitochondrial fragmentation was increased in PH-Fibs. Most importantly, complex I activity was substantially decreased, which was associated with down-regulation of the accessory subunit nicotinamide adenine dinucleotide reduced dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Owing to less-efficient ATP synthesis, mitochondria were hyperpolarized and mitochondrial superoxide production was increased. This pro-oxidative status was further augmented by simultaneous induction of cytosolic nicotinamide adenine dinucleotide phosphate reduced oxidase 4. Although acute and chronic exposure to hypoxia of adventitial fibroblasts from healthy control vessels induced increased glycolysis, it did not induce complex I deficiency as observed in PH-Fibs. This suggests that hypoxia alone is insufficient to induce NDUFS4 down-regulation and constitutive abnormalities in complex I. In conclusion, our study provides evidence that, in the pathogenesis of vascular remodeling in PH, alterations in fibroblast mitochondrial metabolism drive distinct changes in cellular behavior, which potentially occur independently of hypoxia.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Hipertensão Pulmonar/metabolismo , Mitocôndrias/metabolismo , Animais , Bovinos , Respiração Celular , Doença Crônica , Ciclo do Ácido Cítrico , Regulação para Baixo , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Glicólise , Humanos , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Hipóxia/patologia , Pulmão/patologia , Macrófagos/metabolismo , Oxirredução , Fosforilação Oxidativa , Comunicação Parácrina , Fenótipo , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Superóxidos/metabolismo
8.
J Bioenerg Biomembr ; 47(6): 467-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26449597

RESUMO

Cancer cell bioenergetics, maintaining mixed aerobic glycolysis (Warburg phenotype) and oxidative phosphorylation (OXPHOS), is not fully elucidated. Hypoxia-dependent OXPHOS suppression determines aerobic glycolysis. To elucidate further details, we studied hypoxic adaptation (up to 72 h at 5 % oxygen) of hepatocellular carcinoma HepG2 cells. The key regulatory component, hypoxia-inducible factor (HIF)-1α (HIF-1α) was stabilized at 5 h in 5 % oxygen for all three studied regimens, i.e. in glycolytic cells at 5 mM or 25 mM glucose, or in aglycemic (OXPHOS) cells when glucose was replaced by galactose. However, the conventional HIF-mediated suppression of respiration was prevented at aglycemia, which correlated with a high proportion of unphosphorylated pyruvate dehydrogenase (PDH) at 5 % oxygen. Such a modified HIF response in OXPHOS cells, termed as a non-canonical one, contrasted to conventional respiration suppression down to 45 % or 43 %, observed in hypoxia-adapted glycolytic cells at 5 mM or 25 mM glucose, respectively. These hypoxic glycolytic cells had normally highly phosphorylated PDH and most likely utilized pyruvate by aminotransferase reaction of glutaminolysis to feed at least suppressed respiration. Also, glycolytic cells were rather resistant towards the staurosporine-induced apoptosis, whereas aglycemic (OXPHOS) HepG2 cells exhibited much higher susceptibility. We conclude that aglycemia modulates the hypoxic HIF signaling toward a non-canonical response that is unable to carry out complete PDH phosphorylation, allowing a high pyruvate input for OXPHOS from the elevated glycolysis, which together with ongoing glutaminolysis maintain a virtually unchanged respiration. Similar OXPHOS revival may explain distinct tumor sensitivity to chemotherapy and other pharmacological interventions.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Técnicas de Cultura de Células , Hipóxia Celular , Células Hep G2 , Humanos , Fosforilação Oxidativa
9.
J Bioenerg Biomembr ; 47(3): 255-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25833036

RESUMO

Mitochondrial nucleoids are confined sites of mitochondrial DNA existing in complex clusters with the DNA-compacting mitochondrial (mt) transcription factor A (TFAM) and other accessory proteins and gene expression machinery proteins, such as a mt single-stranded-DNA-binding protein (mtSSB). To visualize nucleoid distribution within the mt reticular network, we have employed three-dimensional (3D) double-color 4Pi microscopy. The mt network was visualized in hepatocellular carcinoma HepG2 cells via mt-matrix-addressed GFP, while 3D immunocytochemistry of mtSSB was performed. Optimization of iso-surface computation threshold for nucleoid 4Pi images to 30 led to an average nucleoid diameter of 219 ± 110 and 224 ± 100 nm in glucose- and galactose-cultivated HepG2 cells (the latter with obligatory oxidative phosphorylation). We have positioned mtDNA nucleoids within the mt reticulum network and refined our model for nucleoid redistribution within the fragmented network--clustering of up to ten nucleoids in 2 µm diameter mitochondrial spheroids of a fragmented mt network, arising from an original 10 µm mt tubule of a 400 nm diameter. However, the theoretically fragmented bulk parts were observed most frequently as being reintegrated into the continuous mt network in 4Pi images. Since the predicted nucleoid counts within the bulk parts corresponded to the model, we conclude that fragmentation/reintegration cycles are not accompanied by mtDNA degradation or that mtDNA degradation is equally balanced by mtDNA replication.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Fatores de Transcrição/metabolismo , Técnicas de Cultura de Células , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fluorescência Verde/metabolismo , Células Hep G2 , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Proteínas Mitocondriais/genética , Conformação de Ácido Nucleico , Fatores de Transcrição/genética
10.
Front Endocrinol (Lausanne) ; 15: 1399741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572475

RESUMO

[This corrects the article DOI: 10.3389/fendo.2023.1221520.].

11.
Obesity (Silver Spring) ; 32(2): 339-351, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086768

RESUMO

OBJECTIVE: By exposing mice carrying a deletion of NADPH oxidase isoform 4, NOX4, specifically in pancreatic ß cells (ßNOX4-/-) to nutrient excess stimulated by a high-fat diet (HFD), this study aimed to elucidate the role of ß-cell redox status in the development of meta-inflammation within the diabetic phenotype. METHODS: The authors performed basic phenotyping of ßNOX4-/- mice on HFD involving insulin and glycemic analyses, histochemistry of adipocytes, indirect calorimetry, and cytokine analyses. To characterize local inflammation, the study used caspase-1 activity assay, interleukin-1ß immunochemistry, and real-time polymerase chain reaction during coculturing of ß cells with macrophages. RESULTS: The phenotype of ßNOX4-/- mice on HFD was not associated with hyperinsulinemia and hyperglycemia but showed accumulation of excessive lipids in epididymal fat and ß cells. Surprisingly, mice showed significantly reduced systemic inflammation. Decreased interleukin-1ß protein levels and downregulated NLRP3-inflammasome activity were observed on chronic glucose overload in ßNOX4-/- isolated islets and NOX4-silenced INS1-E cells resulting in attenuated proinflammatory polarization of macrophages/monocytes in vitro and in situ and reduced local islet inflammation. CONCLUSIONS: Experimental evidence suggests that NOX4 pro-oxidant activity in ß cells is involved in NLRP3-inflammasome activation during chronic nutrient overload and participates in local inflammatory signaling and perhaps toward peripheral tissues, contributing to a diabetic inflammatory phenotype.


Assuntos
Diabetes Mellitus , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Inflamação , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
12.
Front Endocrinol (Lausanne) ; 14: 1221520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455926

RESUMO

Cysteine is one of the least abundant but most conserved amino acid residues in proteins, playing a role in their structure, metal binding, catalysis, and redox chemistry. Thiols present in cysteines can be modified by post-translational modifications like sulfenylation, acylation, or glutathionylation, regulating protein activity and function and serving as signals. Their modification depends on their position in the structure, surrounding amino acids, solvent accessibility, pH, etc. The most studied modifications are the redox modifications by reactive oxygen, nitrogen, and sulfur species, leading to reversible changes that serve as cell signals or irreversible changes indicating oxidative stress and cell damage. Selected antioxidants undergoing reversible oxidative modifications like peroxiredoxin-thioredoxin system are involved in a redox-relay signaling that can propagate to target proteins. Cysteine thiols can also be modified by acyl moieties' addition (derived from lipid metabolism), resulting in protein functional modification or changes in protein anchoring in the membrane. In this review, we update the current knowledge on cysteine modifications and their consequences in pancreatic ß-cells. Because ß-cells exhibit well-balanced redox homeostasis, the redox modifications of cysteines here serve primarily for signaling purposes. Similarly, lipid metabolism provides regulatory intermediates that have been shown to be necessary in addition to redox modifications for proper ß-cell function and, in particular, for efficient insulin secretion. On the contrary, the excess of reactive oxygen, nitrogen, and sulfur species and the imbalance of lipids under pathological conditions cause irreversible changes and contribute to oxidative stress leading to cell failure and the development of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Cisteína/química , Células Secretoras de Insulina/metabolismo , Compostos de Sulfidrila/metabolismo , Transdução de Sinais , Oxigênio
13.
Front Endocrinol (Lausanne) ; 14: 1223583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484960

RESUMO

The rapidly developing research field of epitranscriptomics has recently emerged into the spotlight of researchers due to its vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are among the most prevalent and well-characterized modified nucleosides in eukaryotic RNA. Both of these modifications are dynamically regulated by a complex set of epitranscriptomic regulators called writers, readers, and erasers. Altered levels of m6A and also several regulatory proteins were already associated with diabetic tissues. This review summarizes the current knowledge and gaps about m6A and m6Am modifications and their respective regulators in the pathophysiology of diabetes mellitus. It focuses mainly on the more prevalent type 2 diabetes mellitus (T2DM) and its treatment by metformin, the first-line antidiabetic agent. A better understanding of epitranscriptomic modifications in this highly prevalent disease deserves further investigation and might reveal clinically relevant discoveries in the future.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , RNA Mensageiro/metabolismo , Diabetes Mellitus Tipo 2/genética , Adenosina/metabolismo , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA
14.
Front Immunol ; 14: 1223122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497214

RESUMO

Introduction: In pulmonary hypertension (PH), pulmonary arterial remodeling is often accompanied by perivascular inflammation. The inflammation is characterized by the accumulation of activated macrophages and lymphocytes within the adventitial stroma, which is comprised primarily of fibroblasts. The well-known ability of fibroblasts to secrete interleukins and chemokines has previously been implicated as contributing to this tissue-specific inflammation in PH vessels. We were interested if pulmonary fibroblasts from PH arteries contribute to microenvironmental changes that could activate and polarize T-cells in PH. Methods: We used single-cell RNA sequencing of intact bovine distal pulmonary arteries (dPAs) from PH and control animals and flow cytometry, mRNA expression analysis, and respirometry analysis of blood-derived bovine/human T-cells exposed to conditioned media obtained from pulmonary fibroblasts of PH/control animals and IPAH/control patients (CM-(h)PH Fibs vs CM-(h)CO Fibs). Results: Single-cell RNA sequencing of intact bovine dPAs from PH and control animals revealed a pro-inflammatory phenotype of CD4+ T-cells and simultaneous absence of regulatory T-cells (FoxP3+ Tregs). By exposing T-cells to CM-(h)PH Fibs we stimulated their proinflammatory differentiation documented by increased IFNγ and decreased IL4, IL10, and TGFß mRNA and protein expression. Interestingly, we demonstrated a reduction in the number of suppressive T-cell subsets, i.e., human/bovine Tregs and bovine γδ T-cells treated with CM-(h)PH-Fibs. We also noted inhibition of anti-inflammatory cytokine expression (IL10, TGFß, IL4). Pro-inflammatory polarization of bovine T-cells exposed to CM-PH Fibs correlated with metabolic shift to glycolysis and lactate production with increased prooxidant intracellular status as well as increased proliferation of T-cells. To determine whether metabolic reprogramming of PH-Fibs was directly contributing to the effects of PH-Fibs conditioned media on T-cell polarization, we treated PH-Fibs with the HDAC inhibitor SAHA, which was previously shown to normalize metabolic status and examined the effects of the conditioned media. We observed significant suppression of inflammatory polarization associated with decreased T-cell proliferation and recovery of mitochondrial energy metabolism. Conclusion: This study demonstrates how the pulmonary fibroblast-derived microenvironment can activate and differentiate T-cells to trigger local inflammation, which is part of the vascular wall remodeling process in PH.


Assuntos
Hipertensão Pulmonar , Humanos , Animais , Bovinos , Hipertensão Pulmonar/metabolismo , Meios de Cultivo Condicionados/metabolismo , Interleucina-10 , Interleucina-4 , Inflamação/metabolismo , Subpopulações de Linfócitos T/metabolismo , Fator de Crescimento Transformador beta
15.
Antioxid Redox Signal ; 36(13-15): 920-952, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34180254

RESUMO

Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub ß-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Secretagogos/metabolismo
16.
Biochim Biophys Acta ; 1797(6-7): 1327-41, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20144584

RESUMO

Insulin production in pancreatic beta-cells is critically linked to mitochondrial oxidative phosphorylation. Increased ATP production triggered by blood glucose represents the beta-cells' glucose sensor. Type-2 diabetes mellitus results from insulin resistance in peripheral tissues and impaired insulin secretion. Pathology of diabetic beta-cells might be reflected by the altered morphology of mitochondrial network. Its characterization is however hampered by the complexity and density of the three-dimensional (3D) mitochondrial tubular networks in these cell types. Conventional confocal microscopy does not provide sufficient axial resolution to reveal the required details; electron tomography reconstruction of these dense networks is still difficult and time consuming. However, mitochondrial network morphology in fixed cells can also be studied by 4Pi microscopy, a laser scanning microscopy technique which provides an approximately 7-fold improved axial resolution (approximately 100 nm) over conventional confocal microscopy. Here we present a quantitative study of these networks in insulinoma INS-1E cells and primary beta-cells in Langerhans islets. The former were a stably-transfected cell line while the latter were transfected with lentivirus, both expressing mitochondrial matrix targeted redox-sensitive GFP. The mitochondrial networks and their partial disintegration and fragmentation are revealed by carefully created iso-surface plots and their quantitative analysis. We demonstrate that beta-cells within the Langerhans islets from diabetic Goto Kakizaki rats exhibited a more disintegrated mitochondrial network compared to those from control Wistar rats and model insulinoma INS-1E cells. Standardization of these patterns may lead to development of morphological diagnostics for Langerhans islets, for the assessment of beta-cell condition, before their transplantations.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/patologia , Microscopia Confocal/métodos , Mitocôndrias/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Imageamento Tridimensional , Técnicas In Vitro , Células Secretoras de Insulina/ultraestrutura , Insulinoma/patologia , Mitocôndrias/ultraestrutura , Neoplasias Pancreáticas/patologia , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/genética , Transfecção
17.
Antioxidants (Basel) ; 10(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801681

RESUMO

Redox status is a key determinant in the fate of ß-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. ß-cells require proper redox signaling already in cell ontogenesis during the development of mature ß-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional ß-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of ß-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged ß-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact ß-cell redox homeostasis and establish prooxidative metabolism. This can further affect ß-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target ß-cells leading to their dedifferentiation, dysfunction and eventually cell death.

18.
Antioxidants (Basel) ; 10(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572903

RESUMO

Pancreatic ß-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA ß-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.

19.
J Bioenerg Biomembr ; 42(1): 55-67, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20084539

RESUMO

Breast cancer cells can survive and proliferate under harsh conditions of nutrient deprivation, including limited oxygen and glucose availability. We hypothesized that such environments trigger metabolic adaptations of mitochondria, which promote tumor progression. Here, we mimicked aglycemia and hypoxia in vitro and compared the mitochondrial and cellular bioenergetic adaptations of human breast cancer (HTB-126) and non-cancer (HTB-125) cells that originate from breast tissue. Using high-resolution respirometry and western blot analyses, we demonstrated that 4 days of glucose deprivation elevated oxidative phosphorylation five-fold, increased the spread of the mitochondrial network without changing its shape, and decreased the apparent affinity of oxygen in cancer cells (increase in C ( 50 )), whereas it remained unchanged in control cells. The substrate control ratios also remained constant following adaptation. We also observed the Crabtree effect, specifically in HTB-126 cells. Likewise, sustained hypoxia (1% oxygen during 6 days) improved cell respiration in non-cancer cells grown in glucose or glucose-deprived medium (+ 32% and +38%, respectively). Conversely, under these conditions of limited oxygen or a combination of oxygen and glucose deprivation for 6 days, routine respiration was strongly reduced in cancer cells (-36% in glucose medium, -24% in glucose-deprived medium). The data demonstrate that cancer cells behave differently than normal cells when adapting their bioenergetics to microenvironmental conditions. The differences in hypoxia and aglycemia tolerance between breast cancer cells and non-cancer cells may be important when optimizing strategies for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Adaptação Fisiológica , Mama/citologia , Mama/metabolismo , Neoplasias da Mama/patologia , Hipóxia Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Metabolismo Energético , Feminino , Humanos , Modelos Biológicos , Fosforilação Oxidativa , Consumo de Oxigênio
20.
Biomolecules ; 10(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935965

RESUMO

Progress in mass spectroscopy of posttranslational oxidative modifications has enabled researchers to experimentally verify the concept of redox signaling. We focus here on redox signaling originating from mitochondria under physiological situations, discussing mechanisms of transient redox burst in mitochondria, as well as the possible ways to transfer such redox signals to specific extramitochondrial targets. A role of peroxiredoxins is described which enables redox relay to other targets. Examples of mitochondrial redox signaling are discussed: initiation of hypoxia-inducible factor (HIF) responses; retrograde redox signaling to PGC1α during exercise in skeletal muscle; redox signaling in innate immune cells; redox stimulation of insulin secretion, and other physiological situations.


Assuntos
Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipóxia/metabolismo , Imunidade/fisiologia , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Peroxirredoxinas , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA