Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Appl Toxicol ; 43(4): 534-556, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227735

RESUMO

Herpes simplex virus type 2 (HSV-2) is the most common cause of genital disease worldwide. The development of an effective HSV-2 vaccine would significantly impact global health based on the psychological distress caused by genital herpes for some individuals, the risk transmitting the infection from mother to infant, and the elevated risk of acquiring HIV-1. Five nonclinical safety studies were conducted with the replication defective HSV529 vaccine, alone or adjuvanted with GLA-SE, and the G103 subunit vaccine containing GLA-SE. A biodistribution study was conducted in guinea pigs to evaluate distribution, persistence, and shedding of HSV529. A preliminary immunogenicity study was conducted in rabbits to demonstrate HSV529-specific humoral response and its enhancement by GLA-SE. Three repeated-dose toxicity studies, one in guinea pigs and two in rabbits, were conducted to assess systemic toxicity and local tolerance of HSV529, alone or adjuvanted with GLA-SE, or G103 containing GLA-SE. Data from these studies show that both vaccines are safe and well tolerated and support the ongoing HSV-2 clinical trial in which the two vaccine candidates will be given either sequentially or concomitantly to explore their potential synergistic and incremental effects.


Assuntos
Anticorpos Antivirais , Herpesvirus Humano 2 , Humanos , Animais , Cobaias , Coelhos , Distribuição Tecidual , Proteínas do Envelope Viral , Adjuvantes Imunológicos , Vacinas de Subunidades Antigênicas
2.
J Immunotoxicol ; 17(1): 175-185, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078980

RESUMO

The programmed cell death 1 (PD-1) pathway represents a major immune checkpoint which may be engaged by cells in a tumor microenvironment to overcome active T-cell immune surveillance. Pembrolizumab (Keytruda®) is a potent and highly selective humanized monoclonal antibody (mAb) of the IgG4/κ isotype designed to directly block the interaction between PD-1 and its ligands, PD-L1 and PD-L2. The current work was focused on developing a mouse T-Dependent Antibody Response (TDAR) model using a murinized rat anti-mouse PD-1 antibody (muDX400; a rodent surrogate for pembrolizumab) to evaluate the potential impact of treatment with a PD-1 inhibitor on immune responses to an antigen challenge (e.g. HBsAg in Hepatitis B vaccine). Despite the lower binding affinity and T1/2 compared to pembrolizumab, ligand blocking data indicated muDX400 had appropriate pharmacological activity and demonstrated efficacy in mouse tumor models, thus was suitable for pharmacodynamic and vaccination studies in mice. In a vaccination study in which mice were concomitantly administered muDX400 and the Hepatitis B vaccine, muDX400 was well-tolerated and did not result in any immune-mediated adverse effects. The treatment with muDX400 was associated with a shift in the ratio between naive and memory cells in both CD4+ and CD8+ T-lymphocytes in the spleen but did not affect anti-HBsAg antibody response profile. The mouse TDAR model using the Hepatitis B vaccine and the surrogate anti-PD1 monoclonal antibody was a useful tool in the evaluation of the potential immune-mediated effects of pembrolizumab following vaccination and appears to be a suitable alternative for the nonhuman primate TDAR models utilized for other checkpoint inhibitors.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Hepatite B/imunologia , Linfócitos T/imunologia , Animais , Formação de Anticorpos , Humanos , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Primatas , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ratos , Vacinação
3.
J Immunotoxicol ; 17(1): 51-58, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32124652

RESUMO

Nonclinical immunotoxicity evaluation is an important component of safety assessment for pharmaceuticals. One in vitro assay that can be applied in a weight of evidence assessment is the human lymphocyte activation (HuLA) assay, an antigen recall assay, similar in many respects to the in vivo T-cell-dependent antibody response (TDAR) in that cooperation of multiple immune cell types are needed to produce responses. This assay uses human cells and is more amenable than the TDAR to compound ranking and mechanistic studies. The HuLA assay requires less time and drug than TDAR assays, uses a relevant antigen (influenza), reflects a human immune response, and applies principles of the 3Rs to non-clinical safety assessment. Peripheral blood mononuclear cells (PBMC) from flu-immunized donors are re-stimulated with flu-vaccine in the presence of test articles, and proliferation is measured. Published data demonstrate the applicability of the HuLA assay, but it has not been evaluated for reproducibility across testing sites. To evaluate assay reproducibility, scientists from a consortium of institutions conducted the assay in parallel, using a common pool of donor PBMC, influenza vaccine, and known immunosuppressant compounds (cyclosporine A and mycophenolic acid). The HuLA assay was highly reproducible in identification of inhibition of antigen-specific responses, and there was significant agreement across testing sites in the half maximal inhibitory concentration (IC50) values. Intra-site variability was the largest contributor to the variability observed within the assay. The HuLA assay was demonstrated to be ideally suited to comparing multiple compounds (i.e. compound ranking or benchmarking) within the same assay. Overall, the data reported herein support the HuLA assay as a useful tool in mechanistic evaluations of antigen-specific immune responses.


Assuntos
Bioensaio/instrumentação , Testes Imunológicos de Citotoxicidade/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ativação Linfocitária/efeitos dos fármacos , Células Cultivadas , Ciclosporina/farmacologia , Voluntários Saudáveis , Humanos , Imunossupressores/farmacologia , Vacinas contra Influenza/imunologia , Concentração Inibidora 50 , Leucócitos Mononucleares , Ativação Linfocitária/imunologia , Ácido Micofenólico/farmacologia , Reprodutibilidade dos Testes
4.
Vaccine ; 36(43): 6401-6407, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236634

RESUMO

GARDASIL®9, a 9-valent vaccine against human papillomavirus (9vHPV), was developed to prevent diseases mediated by HPV types 6/11/16/18/31/33/45/52/58. During the development of the vaccine, three nonclinical safety studies were conducted to evaluate repeat-dose toxicity and prenatal and postnatal developmental toxicity in Sprague-Dawley rats. In all studies, the vaccine was administered via intramuscular injections of 0.5 mL (the human dose) divided equally into each quadriceps muscle. In the repeat-dose toxicity study, potential local and systemic toxic effects of the 9vHPV vaccine were evaluated after 4 doses given 21 days apart and after a 21-day recovery period. In the prenatal study, virgin females were dosed at 5 and 2 weeks prior to mating and on Gestation Day [GD] 6 (3 total doses). Potential postnatal developmental toxicity of the vaccine formulation was evaluated after 4 total doses (premating to lactation). There were no treatment-related unscheduled deaths in any studies. In the 3-month repeat-dose toxicity study, no adverse effects in male or female rats were observed. Anticipated systemic effects representing immunological responses and local inflammatory reactions at the injection sites were noted in the vaccine-treated groups, with a trend toward recovery by the end of the 21-day recovery period. In the prenatal developmental toxicity study, there was no evidence of toxicity in females given the vaccine. There were no effects on fertility or reproductive performance of the parental females and no evidence of developmental toxicity. In the postnatal study, there was no evidence of toxicity in vaccine-treated females and no evidence of developmental toxicity based on standard postnatal parameters, including behavioral testing and reproductive performance. The vaccine induced antibody responses in all studies and vaccine-specific antibodies were detected in offspring in the developmental toxicity studies. These results support the favorable safety profile of GARDASIL®9.


Assuntos
Exposição Materna , Vacinas contra Papillomavirus/toxicidade , Reprodução , Animais , Anticorpos Antivirais/sangue , Feminino , Fertilidade , Lactação , Papillomaviridae , Gravidez , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
5.
Methods Mol Biol ; 598: 159-71, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19967512

RESUMO

Central to the evaluation of potential immunotoxicants is the concept that measurement of multiple parameters is required for the determination of toxicity toward the immune system. A carefully considered integration of endpoints involved in the immune response should be used to determine an immunotoxic effect. A functional evaluation, specifically the rodent T-cell-dependent antibody response (TDAR) model developed for regulated immunotoxicity evaluations, has been established to detect potential immunotoxicity, especially immunosuppression, caused by chemicals and novel pharmaceuticals in development. This chapter provides an overview and detailed procedures involved in the TDAR assay that measures the immune response (i.e., antibody production) to an introduced antigen (i.e., keyhole limpet hemocyanin (KLH)) in rats or mice treated with a chemical (e.g., a known immunotoxicant and/or a new drug candidate). The TDAR model of competent immune function requires the participation of multiple effector cells such as antigen presenting cells, T lymphocytes, and B lymphocytes to produce the final product, the antigen-specific antibody response. Thus, alterations in the level of antibody production to the specific antigen may reflect effects on any or all of the cell populations involved in TDAR.


Assuntos
Formação de Anticorpos , Hemocianinas/imunologia , Testes Imunológicos/métodos , Linfócitos T/imunologia , Testes de Toxicidade/métodos , Animais , Relação Dose-Resposta Imunológica , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Imunossupressores/imunologia , Imunossupressores/farmacologia , Camundongos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA