Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166613

RESUMO

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydomonas/metabolismo , Multimerização Proteica , Synechocystis/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Membrana Celular/metabolismo , Chlamydomonas/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Fluorescência Verde/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Luz , Lipídeos/química , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estresse Fisiológico/efeitos da radiação , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura
2.
Cell ; 171(1): 148-162.e19, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938114

RESUMO

Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.


Assuntos
Chlamydomonas reinhardtii/citologia , Cloroplastos/ultraestrutura , Proteínas de Algas/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Biogênese de Organelas , Ribulose-Bifosfato Carboxilase/metabolismo
3.
Cell ; 163(7): 1692-701, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687357

RESUMO

Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.


Assuntos
Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Vesículas Transportadoras/ultraestrutura , Animais , Capsídeo/ultraestrutura , Chlorocebus aethiops , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/metabolismo , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dímeros de Pirimidina , Espalhamento a Baixo Ângulo , Vesículas Transportadoras/metabolismo , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo
4.
Nat Methods ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110637

RESUMO

Cryo-focused ion beam milling of frozen-hydrated cells and subsequent cryo-electron tomography (cryo-ET) has enabled the structural elucidation of macromolecular complexes directly inside cells. Application of the technique to multicellular organisms and tissues, however, is still limited by sample preparation. While high-pressure freezing enables the vitrification of thicker samples, it prolongs subsequent preparation due to increased thinning times and the need for extraction procedures. Additionally, thinning removes large portions of the specimen, restricting the imageable volume to the thickness of the final lamella, typically <300 nm. Here we introduce Serial Lift-Out, an enhanced lift-out technique that increases throughput and obtainable contextual information by preparing multiple sections from single transfers. We apply Serial Lift-Out to Caenorhabditis elegans L1 larvae, yielding a cryo-ET dataset sampling the worm's anterior-posterior axis, and resolve its ribosome structure to 7 Å and a subregion of the 11-protofilament microtubule to 13 Å, illustrating how Serial Lift-Out enables the study of multicellular molecular anatomy.

5.
Nature ; 561(7724): 492-497, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209400

RESUMO

Calcitonin gene-related peptide (CGRP) is a widely expressed neuropeptide that has a major role in sensory neurotransmission. The CGRP receptor is a heterodimer of the calcitonin receptor-like receptor (CLR) class B G-protein-coupled receptor and a type 1 transmembrane domain protein, receptor activity-modifying protein 1 (RAMP1). Here we report the structure of the human CGRP receptor in complex with CGRP and the Gs-protein heterotrimer at 3.3 Å global resolution, determined by Volta phase-plate cryo-electron microscopy. The receptor activity-modifying protein transmembrane domain sits at the interface between transmembrane domains 3, 4 and 5 of CLR, and stabilizes CLR extracellular loop 2. RAMP1 makes only limited direct contact with CGRP, consistent with its function in allosteric modulation of CLR. Molecular dynamics simulations indicate that RAMP1 provides stability to the receptor complex, particularly in the positioning of the extracellular domain of CLR. This work provides insights into the control of G-protein-coupled receptor function.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/ultraestrutura , Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Proteína 1 Modificadora da Atividade de Receptores/ultraestrutura , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/ultraestrutura , Sítios de Ligação , Peptídeo Relacionado com Gene de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos , Estabilidade Proteica , Proteína 1 Modificadora da Atividade de Receptores/química , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química , Proteínas ras/química , Proteínas ras/metabolismo
6.
Nature ; 558(7711): 559-563, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925945

RESUMO

The class A adenosine A1 receptor (A1R) is a G-protein-coupled receptor that preferentially couples to inhibitory Gi/o heterotrimeric G proteins, has been implicated in numerous diseases, yet remains poorly targeted. Here we report the 3.6 Å structure of the human A1R in complex with adenosine and heterotrimeric Gi2 protein determined by Volta phase plate cryo-electron microscopy. Compared to inactive A1R, there is contraction at the extracellular surface in the orthosteric binding site mediated via movement of transmembrane domains 1 and 2. At the intracellular surface, the G protein engages the A1R primarily via amino acids in the C terminus of the Gαi α5-helix, concomitant with a 10.5 Å outward movement of the A1R transmembrane domain 6. Comparison with the agonist-bound ß2 adrenergic receptor-Gs-protein complex reveals distinct orientations for each G-protein subtype upon engagement with its receptor. This active A1R structure provides molecular insights into receptor and G-protein selectivity.


Assuntos
Adenosina/química , Adenosina/metabolismo , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Receptor A1 de Adenosina/química , Receptor A1 de Adenosina/ultraestrutura , Sítios de Ligação , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Receptor A1 de Adenosina/metabolismo , Rotação , Especificidade por Substrato
7.
Proc Natl Acad Sci U S A ; 117(50): 32086-32097, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257551

RESUMO

Magnetotactic bacteria maneuver within the geomagnetic field by means of intracellular magnetic organelles, magnetosomes, which are aligned into a chain and positioned at midcell by a dedicated magnetosome-specific cytoskeleton, the "magnetoskeleton." However, how magnetosome chain organization and resulting magnetotaxis is linked to cell shape has remained elusive. Here, we describe the cytoskeletal determinant CcfM (curvature-inducing coiled-coil filament interacting with the magnetoskeleton), which links the magnetoskeleton to cell morphology regulation in Magnetospirillum gryphiswaldense Membrane-anchored CcfM localizes in a filamentous pattern along regions of inner positive-cell curvature by its coiled-coil motifs, and independent of the magnetoskeleton. CcfM overexpression causes additional circumferential localization patterns, associated with a dramatic increase in cell curvature, and magnetosome chain mislocalization or complete chain disruption. In contrast, deletion of ccfM results in decreased cell curvature, impaired cell division, and predominant formation of shorter, doubled chains of magnetosomes. Pleiotropic effects of CcfM on magnetosome chain organization and cell morphology are supported by the finding that CcfM interacts with the magnetoskeleton-related MamY and the actin-like MamK via distinct motifs, and with the cell shape-related cytoskeleton via MreB. We further demonstrate that CcfM promotes motility and magnetic alignment in structured environments, and thus likely confers a selective advantage in natural habitats of magnetotactic bacteria, such as aquatic sediments. Overall, we unravel the function of a prokaryotic cytoskeletal constituent that is widespread in magnetic and nonmagnetic spirilla-shaped Alphaproteobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Divisão Celular , Microscopia Crioeletrônica , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/ultraestrutura , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Tomografia com Microscopia Eletrônica , Magnetossomos/ultraestrutura , Magnetospirillum/metabolismo , Magnetospirillum/ultraestrutura , Microscopia Eletrônica de Transmissão
8.
Proc Natl Acad Sci U S A ; 117(2): 1069-1080, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882451

RESUMO

To promote the biochemical reactions of life, cells can compartmentalize molecular interaction partners together within separated non-membrane-bound regions. It is unknown whether this strategy is used to facilitate protein degradation at specific locations within the cell. Leveraging in situ cryo-electron tomography to image the native molecular landscape of the unicellular alga Chlamydomonas reinhardtii, we discovered that the cytosolic protein degradation machinery is concentrated within ∼200-nm foci that contact specialized patches of endoplasmic reticulum (ER) membrane away from the ER-Golgi interface. These non-membrane-bound microcompartments exclude ribosomes and consist of a core of densely clustered 26S proteasomes surrounded by a loose cloud of Cdc48. Active proteasomes in the microcompartments directly engage with putative substrate at the ER membrane, a function canonically assigned to Cdc48. Live-cell fluorescence microscopy revealed that the proteasome clusters are dynamic, with frequent assembly and fusion events. We propose that the microcompartments perform ER-associated degradation, colocalizing the degradation machinery at specific ER hot spots to enable efficient protein quality control.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteólise , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica , Citosol/metabolismo , Endopeptidases , Imagem Óptica , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Proteína com Valosina/metabolismo
9.
Nature ; 529(7587): 551-4, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26789250

RESUMO

RNA polymerase (Pol) II produces messenger RNA during transcription of protein-coding genes in all eukaryotic cells. The Pol II structure is known at high resolution from X-ray crystallography for two yeast species. Structural studies of mammalian Pol II, however, remain limited to low-resolution electron microscopy analysis of human Pol II and its complexes with various proteins. Here we report the 3.4 Å resolution cryo-electron microscopy structure of mammalian Pol II in the form of a transcribing complex comprising DNA template and RNA transcript. We use bovine Pol II, which is identical to the human enzyme except for seven amino-acid residues. The obtained atomic model closely resembles its yeast counterpart, but also reveals unknown features. Binding of nucleic acids to the polymerase involves 'induced fit' of the mobile Pol II clamp and active centre region. DNA downstream of the transcription bubble contacts a conserved 'TPSA motif' in the jaw domain of the Pol II subunit RPB5, an interaction that is apparently already established during transcription initiation. Upstream DNA emanates from the active centre cleft at an angle of approximately 105° with respect to downstream DNA. This position of upstream DNA allows for binding of the general transcription elongation factor DSIF (SPT4-SPT5) that we localize over the active centre cleft in a conserved position on the clamp domain of Pol II. Our results define the structure of mammalian Pol II in its functional state, indicate that previous crystallographic analysis of yeast Pol II is relevant for understanding gene transcription in all eukaryotes, and provide a starting point for a mechanistic analysis of human transcription.


Assuntos
Microscopia Crioeletrônica , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Elongação da Transcrição Genética , Regulação Alostérica , Motivos de Aminoácidos , Animais , Domínio Catalítico , Bovinos , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Humanos , Modelos Moleculares , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase II/química , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Moldes Genéticos
10.
Proc Natl Acad Sci U S A ; 116(34): 16866-16871, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31375636

RESUMO

Lipid droplets (LDs) are ubiquitous organelles comprising a central hub for cellular lipid metabolism and trafficking. This role is tightly associated with their interactions with several cellular organelles. Here, we provide a systematic and quantitative structural description of LDs in their native state in HeLa cells enabled by cellular cryoelectron microscopy. LDs consist of a hydrophobic neutral lipid mixture of triacylglycerols (TAG) and cholesteryl esters (CE), surrounded by a single monolayer of phospholipids. We show that under normal culture conditions, LDs are amorphous and that they transition into a smectic liquid-crystalline phase surrounding an amorphous core at physiological temperature under certain cell-cycle stages or metabolic scenarios. Following determination of the crystal lattice spacing of 3.5 nm and of a phase transition temperature below 43 °C, we attributed the liquid-crystalline phase to CE. We suggest that under mitotic arrest and starvation, relative CE levels increase, presumably due to the consumption of TAG metabolites for membrane synthesis and mitochondrial respiration, respectively, supported by direct visualization of LD-mitochondrial membrane contact sites. We hypothesize that the structural phase transition may have a major impact on the accessibility of lipids in LDs to enzymes or lipid transporters. These may become restricted in the smectic phase, affecting the exchange rate of lipids with surrounding membranes and lead to a different surface occupancy of LD-associated proteins. Therefore, the composition and the resulting internal structure of LDs is expected to play a key role in their function as hubs of cellular lipid flux.


Assuntos
Gotículas Lipídicas/química , Cristais Líquidos/química , Transição de Fase , Pontos de Checagem do Ciclo Celular , Células HeLa , Humanos , Mitose , Tomografia
11.
J Struct Biol ; 213(3): 107750, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089875

RESUMO

Cetacean morbillivirus (CeMV) is an emerging and highly infectious paramyxovirus that causes outbreaks in cetaceans and occasionally in pinnipeds, representing a major threat to biodiversity and conservation of endangered marine mammal populations in both hemispheres. As for all non-segmented, negative-sense, single-stranded RNA (ssRNA) viruses, the morbilliviral genome is enwrapped by thousands of nucleoprotein (N) protomers. Each bound to six ribonucleotides, N protomers assemble to form a helical ribonucleoprotein (RNP) complex that serves as scaffold for nucleocapsid formation and as template for viral replication and transcription. While the molecular details on RNP complexes elucidated in human measles virus (MeV) served as paradigm model for these processes in all members of the Morbillivirus genus, no structural information has been obtained from other morbilliviruses, nor has any CeMV structure been solved so far. We report the structure of the CeMV RNP complex, reconstituted in vitro upon binding of recombinant CeMV N to poly-adenine ssRNA hexamers and solved to 4.0 Å resolution by cryo-electron microscopy. In spite of the amino acid sequence similarity and consequently similar folding of the N protomer, the CeMV RNP complex exhibits different helical parameters as compared to previously reported MeV orthologs. The CeMV structure reveals exclusive interactions leading to more extensive protomer-RNA and protomer-protomer interfaces. We identified twelve residues, among those varying between CeMV strains, as putatively important for the stabilization of the RNP complex, which highlights the need to study the potential of CeMV N mutations that modulate nucleocapsid assembly to also affect viral phenotype and host adaptation.


Assuntos
Infecções por Morbillivirus , Morbillivirus , Animais , Microscopia Crioeletrônica , Mamíferos/genética , Morbillivirus/genética , Infecções por Morbillivirus/epidemiologia , Nucleoproteínas/genética , RNA Viral/química , RNA Viral/genética
12.
Proc Natl Acad Sci U S A ; 115(9): 2120-2125, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440399

RESUMO

The spindle-shaped virion morphology is common among archaeal viruses, where it is a defining characteristic of many viral families. However, structural heterogeneity intrinsic to spindle-shaped viruses has seriously hindered efforts to elucidate the molecular architecture of these lemon-shaped capsids. We have utilized a combination of cryo-electron microscopy and X-ray crystallography to study Acidianus tailed spindle virus (ATSV). These studies reveal the architectural principles that underlie assembly of a spindle-shaped virus. Cryo-electron tomography shows a smooth transition from the spindle-shaped capsid into the tubular-shaped tail and allows low-resolution structural modeling of individual virions. Remarkably, higher-dose 2D micrographs reveal a helical surface lattice in the spindle-shaped capsid. Consistent with this, crystallographic studies of the major capsid protein reveal a decorated four-helix bundle that packs within the crystal to form a four-start helical assembly with structural similarity to the tube-shaped tail structure of ATSV and other tailed, spindle-shaped viruses. Combined, this suggests that the spindle-shaped morphology of the ATSV capsid is formed by a multistart helical assembly with a smoothly varying radius and allows construction of a pseudoatomic model for the lemon-shaped capsid that extends into a tubular tail. The potential advantages that this novel architecture conveys to the life cycle of spindle-shaped viruses, including a role in DNA ejection, are discussed.


Assuntos
Vírus de Archaea/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Montagem de Vírus/fisiologia , Vírus de Archaea/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas
13.
J Biol Chem ; 294(39): 14215-14230, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399513

RESUMO

Imaging of rod photoreceptor outer-segment disc membranes by atomic force microscopy and cryo-electron tomography has revealed that the visual pigment rhodopsin, a prototypical class A G protein-coupled receptor (GPCR), can organize as rows of dimers. GPCR dimerization and oligomerization offer possibilities for allosteric regulation of GPCR activity, but the detailed structures and mechanism remain elusive. In this investigation, we made use of the high rhodopsin density in the native disc membranes and of a bifunctional cross-linker that preserves the native rhodopsin arrangement by covalently tethering rhodopsins via Lys residue side chains. We purified cross-linked rhodopsin dimers and reconstituted them into nanodiscs for cryo-EM analysis. We present cryo-EM structures of the cross-linked rhodopsin dimer as well as a rhodopsin dimer reconstituted into nanodiscs from purified monomers. We demonstrate the presence of a preferential 2-fold symmetrical dimerization interface mediated by transmembrane helix 1 and the cytoplasmic helix 8 of rhodopsin. We confirmed this dimer interface by double electron-electron resonance measurements of spin-labeled rhodopsin. We propose that this interface and the arrangement of two protomers is a prerequisite for the formation of the observed rows of dimers. We anticipate that the approach outlined here could be extended to other GPCRs or membrane receptors to better understand specific receptor dimerization mechanisms.


Assuntos
Nanopartículas/química , Multimerização Proteica , Rodopsina/química , Animais , Bovinos , Microscopia Crioeletrônica , Células HEK293 , Humanos , Domínios Proteicos , Rodopsina/ultraestrutura
14.
Mol Microbiol ; 112(5): 1423-1439, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419361

RESUMO

Cell division needs to be tightly regulated and closely coordinated with other cellular processes to ensure the generation of fully viable offspring. Here, we investigate division site placement by the cell division regulator MipZ in the alphaproteobacterium Magnetospirillum gryphiswaldense, a species that forms linear chains of magnetosomes to navigate within the geomagnetic field. We show that M. gryphiswaldense contains two MipZ homologs, termed MipZ1 and MipZ2. MipZ2 localizes to the division site, but its absence does not cause any obvious phenotype. MipZ1, by contrast, forms a dynamic bipolar gradient, and its deletion or overproduction cause cell filamentation, suggesting an important role in cell division. The monomeric form of MipZ1 interacts with the chromosome partitioning protein ParB, whereas its ATP-dependent dimeric form shows non-specific DNA-binding activity. Notably, both the dimeric and, to a lesser extent, the monomeric form inhibit FtsZ polymerization in vitro. MipZ1 thus represents a canonical gradient-forming MipZ homolog that critically contributes to the spatiotemporal control of FtsZ ring formation. Collectively, our findings add to the view that the regulatory role of MipZ proteins in cell division is conserved among many alphaproteobacteria. However, their number and biochemical properties may have adapted to the specific needs of the host organism.


Assuntos
Adenosina Trifosfatases/metabolismo , Divisão Celular/fisiologia , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Magnetospirillum/citologia , Magnetospirillum/crescimento & desenvolvimento
15.
Proc Natl Acad Sci U S A ; 114(17): 4412-4417, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396430

RESUMO

Tripeptidyl peptidase II (TPPII) is a eukaryotic protease acting downstream of the 26S proteasome; it removes tripeptides from the degradation products released by the proteasome. Structural studies in vitro have revealed the basic architecture of TPPII, a two-stranded linear polymer that assembles to form a spindle-shaped complex of ∼6 MDa. Dependent on protein concentration, TPPII has a distinct tendency for polymorphism. Therefore, its structure in vivo has remained unclear. To resolve this issue, we have scrutinized cryo-electron tomograms of rat hippocampal neurons for the occurrence and spatial distribution of TPPII by template matching. The quality of the tomograms recorded with the Volta phase plate enabled a detailed structural analysis of TPPII despite its low abundance. Two different assembly states (36-mers and 32-mers) coexist as well as occasional extended forms with longer strands. A distance analysis of the relative locations of TPPII and 26S proteasomes confirmed the visual impression that these two complexes spatially associate in agreement with TPPII's role in postproteasomal degradation.


Assuntos
Aminopeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Serina Endopeptidases/metabolismo , Aminopeptidases/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Modelos Moleculares , Neurônios/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica , Ratos , Serina Endopeptidases/genética
16.
Proc Natl Acad Sci U S A ; 114(6): 1305-1310, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115689

RESUMO

In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA+ ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA+ ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis.


Assuntos
Adenosina Trifosfatases/química , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Microscopia Crioeletrônica , Nucleotídeos/química , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Conformação Proteica
17.
Proc Natl Acad Sci U S A ; 114(52): 13726-13731, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229809

RESUMO

The partitioning of cellular components between the nucleus and cytoplasm is the defining feature of eukaryotic life. The nuclear pore complex (NPC) selectively gates the transport of macromolecules between these compartments, but it is unknown whether surveillance mechanisms exist to reinforce this function. By leveraging in situ cryo-electron tomography to image the native cellular environment of Chlamydomonas reinhardtii, we observed that nuclear 26S proteasomes crowd around NPCs. Through a combination of subtomogram averaging and nanometer-precision localization, we identified two classes of proteasomes tethered via their Rpn9 subunits to two specific NPC locations: binding sites on the NPC basket that reflect its eightfold symmetry and more abundant binding sites at the inner nuclear membrane that encircle the NPC. These basket-tethered and membrane-tethered proteasomes, which have similar substrate-processing state frequencies as proteasomes elsewhere in the cell, are ideally positioned to regulate transcription and perform quality control of both soluble and membrane proteins transiting the NPC.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Poro Nuclear/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica , Poro Nuclear/ultraestrutura , Complexo de Endopeptidases do Proteassoma/ultraestrutura
18.
Mol Microbiol ; 107(4): 542-557, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29243866

RESUMO

Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe3 O4 ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi-disciplinary approach to define the role of MamB during magnetosome formation. Using site-directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo-electron tomography, we show that MamB is most likely an active magnetosome-directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport-independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C-terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biomineralização , Óxido Ferroso-Férrico/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/enzimologia , Alelos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Difusão Dinâmica da Luz , Óxido Ferroso-Férrico/química , Magnetossomos/química , Magnetospirillum/genética , Mutagênese Sítio-Dirigida , Domínios Proteicos , Difração de Raios X
19.
PLoS Genet ; 12(6): e1006101, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27286560

RESUMO

Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins.


Assuntos
Membrana Celular/metabolismo , Magnetossomos , Magnetospirillum/metabolismo , Proteínas de Transporte de Cátions/genética , Óxido Ferroso-Férrico/metabolismo , Ferro/metabolismo , Magnetossomos/genética , Magnetossomos/metabolismo , Magnetossomos/ultraestrutura , Magnetospirillum/genética
20.
Proc Natl Acad Sci U S A ; 113(28): 7816-21, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27342858

RESUMO

Protein degradation in eukaryotic cells is performed by the Ubiquitin-Proteasome System (UPS). The 26S proteasome holocomplex consists of a core particle (CP) that proteolytically degrades polyubiquitylated proteins, and a regulatory particle (RP) containing the AAA-ATPase module. This module controls access to the proteolytic chamber inside the CP and is surrounded by non-ATPase subunits (Rpns) that recognize substrates and deubiquitylate them before unfolding and degradation. The architecture of the 26S holocomplex is highly conserved between yeast and humans. The structure of the human 26S holocomplex described here reveals previously unidentified features of the AAA-ATPase heterohexamer. One subunit, Rpt6, has ADP bound, whereas the other five have ATP in their binding pockets. Rpt6 is structurally distinct from the other five Rpt subunits, most notably in its pore loop region. For Rpns, the map reveals two main, previously undetected, features: the C terminus of Rpn3 protrudes into the mouth of the ATPase ring; and Rpn1 and Rpn2, the largest proteasome subunits, are linked by an extended connection. The structural features of the 26S proteasome observed in this study are likely to be important for coordinating the proteasomal subunits during substrate processing.


Assuntos
Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Humanos , Microscopia Eletrônica de Transmissão , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA