RESUMO
Spt5 is a conserved and essential transcription elongation factor that promotes promoter-proximal pausing, promoter escape, elongation, and mRNA processing. Spt5 plays specific roles in the transcription of inflammation and stress-induced genes and tri-nucleotide expanded-repeat genes involved in inherited neurological pathologies. Here, we report the identification of Spt5-Pol II small-molecule inhibitors (SPIs). SPIs faithfully reproduced Spt5 knockdown effects on promoter-proximal pausing, NF-κB activation, and expanded-repeat huntingtin gene transcription. Using SPIs, we identified Spt5 target genes that responded with profoundly diverse kinetics. SPIs uncovered the regulatory role of Spt5 in metabolism via GDF15, a food intake- and body weight-inhibitory hormone. SPIs further unveiled a role for Spt5 in promoting the 3' end processing of histone genes. While several SPIs affect all Spt5 functions, a few inhibit a single one, implying uncoupling and selective targeting of Spt5 activities. SPIs expand the understanding of Spt5-Pol II functions and are potential drugs against metabolic and neurodegenerative diseases.
Assuntos
Núcleo Celular/efeitos dos fármacos , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , RNA Polimerase II/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Fatores de Elongação da Transcrição/antagonistas & inibidores , Regiões 3' não Traduzidas , Animais , Núcleo Celular/enzimologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Descoberta de Drogas/métodos , Metabolismo Energético/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Histonas/genética , Histonas/metabolismo , Humanos , Proteína Huntingtina/biossíntese , Proteína Huntingtina/genética , Células Jurkat , Células MCF-7 , Camundongos Transgênicos , Mutação , NF-kappa B/biossíntese , NF-kappa B/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Polimerase II/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismoRESUMO
During translation initiation, eIF4G1 dynamically interacts with eIF4E and eIF1. While the role of eIF4E-eIF4G1 is well established, the regulatory functions of eIF4G1-eIF1 are poorly understood. Here, we report the identification of the eIF4G1-eIF1 inhibitors i14G1-10 and i14G1-12. i14G1s directly bind eIF4G1 and inhibit translation in vitro and in the cell, and their effects on translation are dependent on eIF4G1 levels. Translatome analyses revealed that i14G1s mimic eIF1 and eIF4G1 perturbations on the stringency of start codon selection and the opposing roles of eIF1-eIF4G1 in scanning-dependent and scanning-independent short 5' untranslated region (UTR) translation. Remarkably, i14G1s activate ER/unfolded protein response (UPR) stress-response genes via enhanced ribosome loading, elevated 5'UTR translation at near-cognate AUGs, and unexpected concomitant up-regulation of coding-region translation. These effects are, at least in part, independent of eIF2α-phosphorylation. Interestingly, eIF4G1-eIF1 interaction itself is negatively regulated by ER stress and mTOR inhibition. Thus, i14G1s uncover an unknown mechanism of ER/UPR translational stress response and are valuable research tools and potential drugs against diseases exhibiting dysregulated translation.
Assuntos
Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Fator de Iniciação Eucariótico 4G , Fatores de Iniciação em Eucariotos , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Resposta a Proteínas não Dobradas , Animais , Códon de Iniciação , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/antagonistas & inibidores , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Iniciação em Eucariotos/antagonistas & inibidores , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Biossíntese de Proteínas , Resposta a Proteínas não Dobradas/genéticaRESUMO
In recent years, there has been growing interest in SARM1 as a potential breakthrough drug target for treating various pathologies of axon degeneration. SARM1-mediated axon degeneration relies on its TIR domain NADase activity, but recent structural data suggest that the non-catalytic ARM domain could also serve as a pharmacological site as it has an allosteric inhibitory function. Here, we screened for synthetic small molecules that inhibit SARM1, and tested a selected set of these compounds in a DRG axon degeneration assay. Using cryo-EM, we found that one of the newly discovered inhibitors, a calmidazolium designated TK106, not only stabilizes the previously reported inhibited conformation of the octamer, but also a meta-stable structure: a duplex of octamers (16 protomers), which we have now determined to 4.0 Å resolution. In the duplex, each ARM domain protomer is engaged in lateral interactions with neighboring protomers, and is further stabilized by contralateral contacts with the opposing octamer ring. Mutagenesis of the duplex contact sites leads to a moderate increase in SARM1 activation in cultured cells. Based on our data we propose that the duplex assembly constitutes an additional auto-inhibition mechanism that tightly prevents pre-mature activation and axon degeneration.
Assuntos
Proteínas do Domínio Armadillo , Axônios , Axônios/metabolismo , Subunidades Proteicas , Células Cultivadas , Domínios Proteicos , Proteínas do Domínio Armadillo/metabolismo , MutagêneseRESUMO
Targeted covalent inhibitors are an important class of drugs and chemical probes. However, relatively few electrophiles meet the criteria for successful covalent inhibitor design. Here we describe α-substituted methacrylamides as a new class of electrophiles suitable for targeted covalent inhibitors. While typically α-substitutions inactivate acrylamides, we show that hetero α-substituted methacrylamides have higher thiol reactivity and undergo a conjugated addition-elimination reaction ultimately releasing the substituent. Their reactivity toward thiols is tunable and correlates with the pKa/pKb of the leaving group. In the context of the BTK inhibitor ibrutinib, these electrophiles showed lower intrinsic thiol reactivity than the unsubstituted ibrutinib acrylamide. This translated to comparable potency in protein labeling, in vitro kinase assays, and functional cellular assays, with improved selectivity. The conjugate addition-elimination reaction upon covalent binding to their target cysteine allows functionalizing α-substituted methacrylamides as turn-on probes. To demonstrate this, we prepared covalent ligand directed release (CoLDR) turn-on fluorescent probes for BTK, EGFR, and K-RasG12C. We further demonstrate a BTK CoLDR chemiluminescent probe that enabled a high-throughput screen for BTK inhibitors. Altogether we show that α-substituted methacrylamides represent a new and versatile addition to the toolbox of targeted covalent inhibitor design.
RESUMO
Elucidating the physiological roles and modes of action of the recently discovered ligands (designated ALKAL1,2 or AUG-α,ß) of the receptor tyrosine kinases Anaplastic Lymphoma Kinase (ALK) and Leukocyte Tyrosine Kinase (LTK) has been limited by difficulties in producing sufficient amounts of the two ligands and their poor stability. Here we describe procedures for expression and purification of AUG-α and a deletion mutant lacking the N-terminal variable region. Detailed biochemical characterization of AUG-α by mass spectrometry shows that the four conserved cysteines located in the augmentor domain (AD) form two intramolecular disulfide bridges while a fifth, primate-specific cysteine located in the N-terminal variable region mediates dimerization through formation of a disulfide bridge between two AUG-α molecules. In contrast to AUG-α, the capacity of AUG-α AD to undergo dimerization is strongly compromised. However, full-length AUG-α and the AUG-α AD deletion mutant stimulate similar tyrosine phosphorylation of cells expressing either ALK or LTK. Both AUG-α and AUG-α AD also stimulate a similar profile of MAP kinase response in L6 cells and colony formation in soft agar by autocrine stimulation of NIH 3T3 cells expressing ALK. Moreover, both AUG-α and AUG-α AD stimulate neuronal differentiation of human neuroblastoma NB1 and PC12 cells in a similar dose-dependent manner. Taken together, these experiments show that deletion of the N-terminal variable region minimally affects the activity of AUG-α toward LTK or ALK stimulation in cultured cells. Reduced dimerization might be compensated by high local concentration of AUG-α AD bound to ALK at the cell membrane and by potential ligand-induced receptor-receptor interactions.
Assuntos
Citocinas/isolamento & purificação , Receptores Proteína Tirosina Quinases/isolamento & purificação , Motivos de Aminoácidos , Quinase do Linfoma Anaplásico , Animais , Citocinas/química , Citocinas/fisiologia , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Células PC12 , Multimerização Proteica , Ratos , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismoRESUMO
Novel targeted therapies demonstrate improved survival in specific subgroups (defined by genetic variants) of acute myeloid leukemia (AML) patients, validating the paradigm of molecularly targeted therapy. However, identifying correlations between AML molecular attributes and effective therapies is challenging. Recent advances in high-throughput in vitro drug sensitivity screening applied to primary AML blasts were used to uncover such correlations; however, these methods cannot predict the response of leukemic stem cells (LSCs). Our study aimed to predict in vitro response to targeted therapies, based on molecular markers, with subsequent validation in LSCs. We performed ex vivo sensitivity screening to 46 drugs on 29 primary AML samples at diagnosis or relapse. Using unsupervised hierarchical clustering analysis we identified group with sensitivity to several tyrosine kinase inhibitors (TKIs), including the multi-TKI, dasatinib, and searched for correlations between dasatinib response, exome sequencing and gene expression from our dataset and from the Beat AML dataset. Unsupervised hierarchical clustering analysis of gene expression resulted in clustering of dasatinib responders and non-responders. In vitro response to dasatinib could be predicted based on gene expression (AUC=0.78). Furthermore, mutations in FLT3/ITD and PTPN11 were enriched in the dasatinib sensitive samples as opposed to mutations in TP53 which were enriched in resistant samples. Based on these results, we selected FLT3/ITD AML samples and injected them to NSG-SGM3 mice. Our results demonstrate that in a subgroup of FLT3/ITD AML (4 out of 9) dasatinib significantly inhibits LSC engraftment. In summary we show that dasatinib has an anti-leukemic effect both on bulk blasts and, more importantly, LSCs from a subset of AML patients that can be identified based on mutational and expression profiles. Our data provide a rational basis for clinical trials of dasatinib in a molecularly selected subset of AML patients.
Assuntos
Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Animais , Dasatinibe/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Transcriptoma , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
T-helper 17 (Th17) cells have important functions in adaptor immunity and have also been implicated in inflammatory disorders. The bromodomain and extraterminal domain (BET) family proteins regulate gene transcription during lineage-specific differentiation of naïve CD4+ T cells to produce mature T-helper cells. Inhibition of acetyl-lysine binding of the BET proteins by pan-BET bromodomain (BrD) inhibitors, such as JQ1, broadly affects differentiation of Th17, Th1, and Th2 cells that have distinct immune functions, thus limiting their therapeutic potential. Whether these BET proteins represent viable new epigenetic drug targets for inflammatory disorders has remained an unanswered question. In this study, we report that selective inhibition of the first bromodomain of BET proteins with our newly designed small molecule MS402 inhibits primarily Th17 cell differentiation with a little or almost no effect on Th1 or Th2 and Treg cells. MS402 preferentially renders Brd4 binding to Th17 signature gene loci over those of housekeeping genes and reduces Brd4 recruitment of p-TEFb to phosphorylate and activate RNA polymerase II for transcription elongation. We further show that MS402 prevents and ameliorates T-cell transfer-induced colitis in mice by blocking Th17 cell overdevelopment. Thus, selective pharmacological modulation of individual bromodomains likely represents a strategy for treatment of inflammatory bowel diseases.
Assuntos
Diferenciação Celular , Colite/etiologia , Colite/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Animais , Colite/patologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Humanos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologiaRESUMO
Covalent probes can display unmatched potency, selectivity, and duration of action; however, their discovery is challenging. In principle, fragments that can irreversibly bind their target can overcome the low affinity that limits reversible fragment screening, but such electrophilic fragments were considered nonselective and were rarely screened. We hypothesized that mild electrophiles might overcome the selectivity challenge and constructed a library of 993 mildly electrophilic fragments. We characterized this library by a new high-throughput thiol-reactivity assay and screened them against 10 cysteine-containing proteins. Highly reactive and promiscuous fragments were rare and could be easily eliminated. In contrast, we found hits for most targets. Combining our approach with high-throughput crystallography allowed rapid progression to potent and selective probes for two enzymes, the deubiquitinase OTUB2 and the pyrophosphatase NUDT7. No inhibitors were previously known for either. This study highlights the potential of electrophile-fragment screening as a practical and efficient tool for covalent-ligand discovery.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Elétrons , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Peso Molecular , Conformação Proteica , Fatores de TempoRESUMO
BACKGROUND/AIMS: The extracellular signal-regulated kinases (ERK) 1 and 2 (ERK1/2) are members of the mitogen-activated protein kinase (MAPK) family. Upon stimulation, these kinases translocate from the cytoplasm to the nucleus, where they induce physiological processes such as proliferation and differentiation. The mechanism of translocation of this kinase involves phosphorylation of two Ser residues within a nuclear translocation signal (NTS), which allows binding to importin7 and a subsequent penetration via nuclear pores. However, the regulation of this process and the protein kinases involved are not yet clear. METHODS: To answer this point we developed specific anti phospho-SPS antibody, used this and other antibodies in Western blots and crystalized the phospho-mimetic mutated ERK. RESULTS: Here we show that the phosphorylation of both Ser residues is mediated mainly by casein kinase 2 (CK2) and that active ERK may assist in the phosphorylation of the N-terminal Ser. We also demonstrate that the phosphorylation is dependent on the release of ERK from cytoplasmic anchoring proteins. Crystal structure of the phosphomimetic ERK revealed that the NTS phosphorylation creates an acidic patch in ERK. Our model is that in resting cells ERK is bound to cytoplasmic anchors, which prevent its NTS phosphorylation. Upon stimulation, phosphorylation of the ERK TEY domain releases ERK and allows phosphorylation of its NTS by CK2 and active ERK to generate a negatively charged patch in ERK, binding to importin 7 and nuclear translocation. CONCLUSION: These results provide an important role of CK2 in regulating nuclear ERK activities.
Assuntos
Núcleo Celular/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transporte Ativo do Núcleo Celular , Caseína Quinase II/metabolismo , Linhagem Celular , Humanos , Carioferinas/metabolismo , Fosforilação , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismoRESUMO
The transition between the proliferation and differentiation of progenitor cells is a key step in organogenesis, and alterations in this process can lead to developmental disorders. The extracellular signal-regulated kinase 1/2 (ERK) signaling pathway is one of the most intensively studied signaling mechanisms that regulates both proliferation and differentiation. How a single molecule (e.g. ERK) can regulate two opposing cellular outcomes is still a mystery. Using both chick and mouse models, we shed light on the mechanism responsible for the switch from proliferation to differentiation of head muscle progenitors and implicate ERK subcellular localization. Manipulation of the fibroblast growth factor (FGF)-ERK signaling pathway in chick embryos in vitro and in vivo demonstrated that blockage of this pathway accelerated myogenic differentiation, whereas its activation diminished it. We next examined whether the spatial subcellular localization of ERK could act as a switch between proliferation (nuclear ERK) and differentiation (cytoplasmic ERK) of muscle progenitors. A myristoylated peptide that blocks importin 7-mediated ERK nuclear translocation induced robust myogenic differentiation of muscle progenitor/stem cells in both head and trunk. In the mouse, analysis of Sprouty mutant embryos revealed that increased ERK signaling suppressed both head and trunk myogenesis. Our findings, corroborated by mathematical modeling, suggest that ERK shuttling between the nucleus and the cytoplasm provides a switch-like transition between proliferation and differentiation of muscle progenitors.
Assuntos
Diferenciação Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Desenvolvimento Muscular/fisiologia , Células-Tronco/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Bromodesoxiuridina , Proliferação de Células , Embrião de Galinha , Primers do DNA/genética , Imunofluorescência , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Specific protein-protein interaction (PPI) is an essential feature of many cellular processes however, targeting these interactions by small molecules is highly challenging due to the nature of the interaction interface. Thus, screening for PPI inhibitors requires enormous number of compounds. Here we describe a simple and improved protocol designed for a search of direct PPI inhibitors. We engineered a bacterial expression system for the split-Renilla luciferase (RL) complementation assay that monitors PPI. This enables production of large quantities of the RL fusion proteins in a simple and cost effective manner that is suitable for very large screens. Subsequently, inhibitory compounds are analyzed in a similar complementation assay in living cultured mammalian cells to select for those that can penetrate cells. We applied this method to NF-κB, a family of dimeric transcription factors that plays central roles in immune responses, cell survival and aging, and its dysregulation is linked to many pathological states. This strategy led to the identification of several direct NF-κB inhibitors. As the described protocol is very straightforward and robust it may be suitable for many pairs of interacting proteins.
Assuntos
Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/métodos , Luciferases de Renilla/metabolismo , NF-kappa B/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Medições Luminescentes , Ligação Proteica , Mapeamento de Interação de Proteínas/métodosRESUMO
Extracellular signal-regulated kinases (ERKs) are key signaling molecules that regulate a large number of cellular processes, including mitosis. We showed previously that ERK1c, an alternatively spliced form of ERK1, facilitates mitotic Golgi fragmentation without the involvement of ERK1 and ERK2. Here we demonstrate that activation of ERK1c is mainly mediated by mitogen-activated protein kinase (MAPK)/ERK kinase 1b (MEK1b), which is an alternatively spliced form of MEK1 that was previously considered an inactive kinase. MEK1b phosphorylation and activity are preferentially stimulated by nocodazole, to induce its specific activity toward ERK1c. MEK1/2, on the other hand, preferentially target ERK1/2 in response to growth factors, such as EGF. As previously demonstrated for ERK1c, also MEK1b expression and activity are elevated during mitosis, and thereby enhance Golgi fragmentation and mitotic rate. MEK1 activity is also increased during mitosis, but this isoform facilitates mitotic progression without affecting the Golgi architecture. These results illustrate that the ERK cascade is divided into two routes: the classic MEK1/2-ERK1/2 and the splice-variant MEK1b-ERK1c, each of which regulates distinct cellular processes and thus extends the cascade specificity.
Assuntos
Regulação Enzimológica da Expressão Gênica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mitose/fisiologia , Processamento Alternativo , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Nocodazol/farmacologia , Fosforilação , Especificidade por Substrato , Moduladores de Tubulina/farmacologiaRESUMO
Extracellular signal-regulated kinase (ERK) signaling plays a crucial role in regulating immune cell function and has been implicated in autoimmune disorders. To date, all commercially available inhibitors of ERK target upstream components, such as mitogen-activated protein (MAP) kinase/ERK kinase (MEKs), but not ERK itself. Here, we directly inhibit nuclear ERK translocation by a novel pharmacological approach (Glu-Pro-Glu (EPE) peptide), leading to an increase in cytosolic ERK phosphorylation during T helper (Th)17 cell differentiation. This was accompanied by diminished secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine influencing the encephalitogenicity of Th17 cells. Neither the production of the cytokine interleukin (IL)-17 nor the proliferation rate of T cells was affected by the EPE peptide. The in vivo effects of ERK inhibition were challenged in two independent variants of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Overall, ERK inhibition had only a very minor impact on the clinical disease course of EAE. This indicates that while ERK translocation might promote encephalitogenicity in T cells in vitro by facilitating GM-CSF production, this effect is overcome in more complex in vivo animal models of central nervous system (CNS) autoimmunity.
Assuntos
Encefalomielite Autoimune Experimental/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Modelos Biológicos , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Fosforilação , Transporte Proteico , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologia , Células Th17/metabolismoRESUMO
Histone lysine acetylation and methylation have an important role during gene transcription in a chromatin context. Knowledge concerning the types of protein modules that can interact with acetyl-lysine has so far been limited to bromodomains. Recently, a tandem plant homeodomain (PHD) finger (PHD1-PHD2, or PHD12) of human DPF3b, which functions in association with the BAF chromatin remodelling complex to initiate gene transcription during heart and muscle development, was reported to bind histones H3 and H4 in an acetylation-sensitive manner, making it the first alternative to bromodomains for acetyl-lysine binding. Here we report the structural mechanism of acetylated histone binding by the double PHD fingers of DPF3b. Our three-dimensional solution structures and biochemical analysis of DPF3b highlight the molecular basis of the integrated tandem PHD finger, which acts as one functional unit in the sequence-specific recognition of lysine-14-acetylated histone H3 (H3K14ac). Whereas the interaction with H3 is promoted by acetylation at lysine 14, it is inhibited by methylation at lysine 4, and these opposing influences are important during transcriptional activation of the mouse DPF3b target genes Pitx2 and Jmjd1c. Binding of this tandem protein module to chromatin can thus be regulated by different histone modifications during the initiation of gene transcription.
Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histonas/química , Histonas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Dedos de Zinco , Acetilação , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Lisina/química , Lisina/metabolismo , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional , Regulação para CimaRESUMO
Histone acetyltransferase 1 is the founding member of the histone acetyltransferase superfamily and catalyzes lysine acetylation of newly synthesized histone H4. Here we report a 1.9-Šresolution crystal structure of human histone acetyltransferase 1 in complex with acetyl coenzyme A and histone H4 peptide. The crystal structure reveals that the cofactor and the side chain of lysine 12 of histone H4 peptide are placed in the canyon between the central and C-terminal domains. Histone H4 peptide adopts a well-defined conformation and establishes an extensive set of interactions with the enzyme including invariant residues Glu64 and Trp199, which together govern substrate-binding specificity of histone acetyltransferase 1. Our structure-guided enzyme kinetic study further demonstrates a cumulative effect of the active-site residues Glu187, Glu276, and Asp277 on deprotonation of the ε-amino group of reactive Lys12 for direct attack of the acetyl group of the cofactor.
Assuntos
Histona Acetiltransferases/química , Modelos Moleculares , Conformação Proteica , Catálise , Clonagem Molecular , Cristalografia , Humanos , Especificidade por Substrato , Difração de Raios XRESUMO
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Diffuse midline gliomas (DMGs) are among the most aggressive and fatal brain cancers in children. They are often associated with changes in histones, the proteins that control gene activity and give chromosomes their structure. Most children with DMGs, for example, share the same anomaly in their histone H3 protein (referred to as the H3-K27M mutation). This change affects how small chemical tags called methyl and acetyl groups can be added onto histone 3, which in turn alters the way the protein can switch genes on and off. As a result, tumours start to develop. One potential therapeutic strategy against DMGs is to use histone deacetylase inhibitors (HDACi), a promising type of drugs which inhibits the enzymes that remove acetyl groups from histones. Patients can develop resistance to HDACi, however, highlighting the need to explore other approaches. One possibility is to treat patients with several types of drugs, each usually targeting a distinct biological process that contributes to the emergence of cancer. This combined approach can have multiple benefits; the drugs potentially amplify each other's effect, for example, and it is also less likely for cells to become resistant to more than one compound at the time. In addition, each drug in the combination can be used in a lower dose to reduce side effects and benefit patients. DMG tumour cells often feature higher activity levels of a protein known as MYC, which can contribute to the growth of the tumour. Algranati, Oren et al. therefore set out to test whether combining an HDACi known as Vorinostat with a drug that blocks MYC activity (Sulfopin) can act as an effective treatment for this cancer. Tumour samples from eight DMG patients were treated with either Sulfopin alone, or Sulfopin in association with Vorinostat. Cells exposed to both drugs were less likely to survive, and additional genetic experiments showed that the combined treatment had resulted in pathways that promote tumour development being blocked. When both Sulfopin and Vorinostat were administered to mice made to grow human DMG tumors, the animals showed a greater reduction in tumor growth. Treatment options for DMG are usually limited, with chemotherapy often being ineffective and surgery impossible. The work by Algranati, Oren et al. suggests that combining HDACi and drugs targeting the MYC pathway is a strategy that should be examined further to determine whether clinical applications are possible.
Assuntos
Glioma , Inibidores de Histona Desacetilases , Histona Desacetilases , Histonas , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Animais , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Histonas/metabolismo , Histonas/genética , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Vorinostat/farmacologia , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Criança , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Spliceosome machinery mutations are common early mutations in myeloid malignancies; however, effective targeted therapies against them are still lacking. In the current study, we used an in vitro high-throughput drug screen among four different isogenic cell lines and identified RKI-1447, a Rho-associated protein kinase inhibitor, as selective cytotoxic effector of SRSF2 mutant cells. RKI-1447 targeted SRSF2 mutated primary human samples in xenografts models. RKI-1447 induced mitotic catastrophe and induced major reorganization of the microtubule system and severe nuclear deformation. Transmission electron microscopy and 3D light microscopy revealed that SRSF2 mutations induce deep nuclear indentation and segmentation that are apparently driven by microtubule-rich cytoplasmic intrusions, which are exacerbated by RKI-1447. The severe nuclear deformation in RKI-1447-treated SRSF2 mutant cells prevents cells from completing mitosis. These findings shed new light on the interplay between microtubules and the nucleus and offers new ways for targeting pre-leukemic SRSF2 mutant cells.
RESUMO
NF-κB-mediated inflammation is the major pathology in chronic kidney diseases, including HIV-associated nephropathy (HIVAN) that ultimately progresses to end stage renal disease. HIV infection in the kidney induces NF-κB activation, leading to the production of proinflammatory chemokines, cytokines, and adhesion molecules. In this study, we explored selective inhibition of NF-κB transcriptional activity by small molecule blocking NF-κB binding to the transcriptional cofactor BRD4, which is required for the assembly of the productive transcriptional complex comprising positive transcription elongation factor b and RNA polymerase II. We showed that our BET (Bromodomain and Extra-Terminal domain)-specific bromodomain inhibitor MS417, designed to block BRD4 binding to the acetylated NF-κB, effectively attenuates NF-κB transcriptional activation of proinflammatory genes in kidney cells treated with TNFα or infected by HIV. MS417 ameliorates inflammation and kidney injury in HIV-1 transgenic mice, an animal model for HIVAN. Our study suggests that BET bromodomain inhibition, targeting at the proinflammatory activity of NF-κB, represents a new therapeutic approach for treating NF-κB-mediated inflammation and kidney injury in HIVAN.
Assuntos
Nefropatia Associada a AIDS/metabolismo , HIV-1/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Nefropatia Associada a AIDS/genética , Nefropatia Associada a AIDS/patologia , Acilação , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Modelos Animais de Doenças , HIV-1/genética , Humanos , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Proteínas Nucleares/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genéticaRESUMO
5'-Methylthioadenosine (MTA) is the common by-product of polyamine (PA), nicotianamine (NA), and ethylene biosynthesis in Arabidopsis (Arabidopsis thaliana). The methylthiol moiety of MTA is salvaged by 5'-methylthioadenosine nucleosidase (MTN) in a reaction producing methylthioribose (MTR) and adenine. The MTN double mutant, mtn1-1mtn2-1, retains approximately 14% of the MTN enzyme activity present in the wild type and displays a pleiotropic phenotype that includes altered vasculature and impaired fertility. These abnormal traits were associated with increased MTA levels, altered PA profiles, and reduced NA content. Exogenous feeding of PAs partially recovered fertility, whereas NA supplementation improved fertility and also reversed interveinal chlorosis. The analysis of PA synthase crystal structures containing bound MTA suggests that the corresponding enzyme activities are sensitive to available MTA. Mutant plants that expressed either MTN or human methylthioadenosine phosphorylase (which metabolizes MTA without producing MTR) appeared wild type, proving that the abnormal traits of the mutant are due to MTA accumulation rather than reduced MTR. Based on our results, we propose that the key targets affected by increased MTA content are thermospermine synthase activity and spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A.