Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 39(2): 221-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664654

RESUMO

BACKGROUND: Prenatal alcohol exposure can kill developing neurons, leading to microencephaly and mental retardation. However, not all fetuses are equally vulnerable to alcohol's neurotoxic effects. While some fetuses are severely affected and are ultimately diagnosed with fetal alcohol syndrome (FAS), others have no evidence of neuropathology and are behaviorally normal. These widely different outcomes among alcohol-exposed fetuses are likely due, in part, to genetic differences. Some fetuses possess genotypes that make them much more vulnerable than others to alcohol's teratogenic effects. However, to date, only 1 gene has been identified whose mutation can worsen alcohol-induced behavioral deficits in an animal model of FAS. That gene is neuronal nitric oxide synthase (nNOS). The purpose of this study was to determine whether mutation of nNOS can likewise worsen alcohol-induced microencephaly and lead to permanent neuronal deficits. METHODS: Wild-type and nNOS(-/-) mice received alcohol (0.0, 2.2, or 4.4 mg/g) daily over postnatal days (PDs) 4 to 9. Beginning on PD 85, the mice underwent a series of behavioral tests; the results of which are reported in the companion paper. The brains were then weighed, and stereological cell counts were performed on the cerebral cortex and hippocampal formation, which are the brain regions that mediate the aforementioned behavioral tasks. RESULTS: Alcohol caused dose-dependent microencephaly, but only in the nNOS(-/-) mice and not in wild-type mice. Alcohol-induced neuronal losses were more severe in the nNOS(-/-) mice than in the wild-type mice in all of the brain regions examined, including the cerebral cortex, hippocampal CA3 subregion, hippocampal CA1 subregion, and dentate gyrus. CONCLUSIONS: Targeted mutation of the nNOS gene increases the vulnerability of the developing brain to alcohol-induced growth restriction and neuronal losses. This increased neuropathology is associated with worsened behavioral dysfunction. The results demonstrate the critical importance of genotype in determining the outcome of developmental alcohol exposure.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Córtex Cerebral/efeitos dos fármacos , Etanol/farmacologia , Transtornos do Espectro Alcoólico Fetal/genética , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Contagem de Células , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Modelos Animais de Doenças , Feminino , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Interação Gene-Ambiente , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Neurônios/citologia , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/genética , Gravidez
2.
Alcohol Clin Exp Res ; 39(2): 212-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25684045

RESUMO

BACKGROUND: Alcohol abuse during pregnancy often induces neuropsychological problems in the offspring, including learning disorders, attention deficits, and behavior problems, all of which are prominent components of fetal alcohol spectrum disorders (FASD). However, not all children who were exposed to alcohol in utero are equally affected by it. While some children have major deficits, others are spared. This unequal vulnerability is likely due largely to differences in fetal genetics. Some fetuses appear to have certain genotypes that make them much more prone to FASD. However, to date, no gene has been identified that worsens alcohol-induced brain dysfunction. Nitric oxide (NO) is a gaseous molecule that can protect developing neurons against alcohol-induced death. In the brain, NO is produced by neuronal nitric oxide synthase (nNOS). In this study, we examined whether homozygous mutation of the nNOS gene in mice worsens the behavioral deficits of developmental alcohol exposure. METHODS: Wild-type and nNOS(-/-) mice received alcohol (0.0, 2.2, or 4.4 mg/g) daily over postnatal days (PDs) 4 to 9. Beginning on PD 85, the mice underwent a series of behavioral tests, including open field activity, the Morris water maze, and paired pulse inhibition. RESULTS: For the wild-type mice, alcohol impaired performance only in the water maze. In contrast, for the nNOS(-/-) mice, alcohol impaired performance on all 3 tasks. Furthermore, the nNOS(-/-) mice were substantially more impaired than wild-type mice in their performance on all 3 of the behavioral tests and at both the low (2.2) and high (4.4) doses of alcohol. CONCLUSIONS: Targeted disruption of the nNOS gene worsens the behavioral impact of developmental alcohol exposure and allows alcohol-induced learning problems to emerge that are not seen in wild type. This is the first demonstration that a specific genotype can interact with alcohol to worsen functional brain deficits in an animal model of FASD.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Transtornos do Espectro Alcoólico Fetal/genética , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/genética , Inibição Pré-Pulso/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Interação Gene-Ambiente , Camundongos , Camundongos Knockout , Atividade Motora/genética , Gravidez , Inibição Pré-Pulso/genética , Distribuição Aleatória
3.
Viruses ; 11(6)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207945

RESUMO

When infection with lymphocytic choriomeningitis (LCMV) occurs during pregnancy, the virus can infect the fetus and injure the fetal brain. However, type, location, and severity of neuropathology differ among cases. One possible explanation for this diversity is that fetuses are infected with different viral strains. Using a rat model of congenital LCMV infection, we investigated how differences in LCMV strain (E350, WE2.2, and Clone 13) affect outcome. Rat pups received intracranial inoculations on postnatal day 4. E350 initially targeted glial cells, while WE2.2 and Clone 13 targeted neurons. The E350 strain induced focal destructive lesions, while the other strains induced global microencephaly. E350 attracted large numbers of CD8+ lymphocytes early in the disease course, while Clone 13 attracted CD4+ lymphocytes, and the infiltration occurred late. The E350 and WE2.2 strains induced large increases in expression of pro-inflammatory cytokines, while Clone 13 did not. The animals infected with E350 and WE2.2 became ataxic and performed poorly on the negative geotaxis assay, while the Clone 13 animals had profound growth failure. Thus, in the developing brain, different LCMV strains have different patterns of infection, neuropathology, immune responses and disease symptoms. In humans, different outcomes from congenital LCMV may reflect infection with different strains.


Assuntos
Variação Biológica da População , Interações Hospedeiro-Patógeno , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Animais , Animais Recém-Nascidos , Ataxia/patologia , Encéfalo/patologia , Encéfalo/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/análise , Modelos Animais de Doenças , Fatores Imunológicos/análise , Coriomeningite Linfocítica/virologia , Neuroglia/virologia , Neurônios/virologia , Ratos
4.
Front Genet ; 3: 12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363339

RESUMO

Peripheral mononuclear cell preparations are commonly used as proxies for other tissues in studies of the role of gene expression and methylation in human disease. Whether changes in peripheral DNA methylation are associated with changes in peripheral blood or brain gene expression is not clear. In order to test the former hypothesis and determine which genome-wide methylation platform was most suitable for our studies of peripheral blood cells, we compared the results from two commercially available genome-wide methylation arrays with respect to genome-wide gene expression using lymphoblast DNA and RNA from eight individuals at the promoters of 5619 genes. We found that methylation signatures at these gene promoters were significantly correlated with one another across platforms and with genome-wide gene expression, but the extent of that relationship is dependent on choice of platform and degree of methylation. Taken in context with data from other studies, these data demonstrate that peripheral blood cell methylation is associated with gene expression and that further studies to clarify the extent of this relationship, and the relationship between central and peripheral DNA methylation are in order.

5.
Front Psychiatry ; 3: 55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22707942

RESUMO

Altered regulation of the serotonin transporter (SLC6A4) is hypothesized to be a key event in many forms of neuropsychiatric illness, yet our understanding of the molecular mechanisms through which changes in gene function could lead to illness remains incomplete. In prior studies, we and others have demonstrated that methylation of CpG residues in the promoter associated CpG island alters SLC6A4 gene expression, that the extent of that DNA methylation in child abuse is genotype dependent, and that adverse childhood experiences such as child sex abuse are related to methylation. However, we have not examined whether these effects are splice variant specific, whether the association of methylation to gene expression varies as a function of genotype, and whether methylation in other SLC6A4 gene regions are more likely candidates for GxE effects. In the current investigation we measured methylation in lymphoblast DNA from 158 female subjects in the Iowa Adoption Studies at 16 CpG residues spread across the SLC6A4 locus, and analyzed their relationship to gene expression for two SLC6A4 splice variants. Methylation of two CpG residues in the shore of the CpG island (cg22584138 and cg05951817), a location immediately upstream from exon 1A, predicted gene expression for the splice variant containing Exon 1A + 1B. Methylation at two residues in the CpG island itself (cg 25769822 and cg05016953) was associated with total SLC6A4 expression. Examination of these four CpG residues indicated that methylation of cg22584138 was influenced by both genotype and sex abuse, whereas methylation of cg05016953 was influenced only by sex abuse history. Factors influencing methylation at other CpG dinucleotide pairs were not identified. We conclude that methylation effects on transcription may vary as a function of underlying gene motif and splice variant, and that the shore of CpG islands, upstream of TSS, may be of particular interest in examining environmental effects on methylation.

6.
Front Genet ; 3: 54, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514556

RESUMO

Chronic alcohol intake is associated with a wide variety of adverse health outcomes including depression, diabetes, and heart disease. Unfortunately, the molecular mechanisms through which these effects are conveyed are not clearly understood. To examine the potential role of epigenetic factors in this process, we examined the relationship of recent alcohol intake to genome wide methylation patterns using the Illumina 450 Methylation Bead Chip and lymphoblast DNA derived from 165 female subjects participating in the Iowa Adoption Studies. We found that the pattern of alcohol use over the 6-months immediately prior to phlebotomy was associated with, severity-dependent changes in the degree of genome wide methylation that preferentially hypermethylate the central portion of CpG islands with methylation at cg05600126, a probe in ABR, and the 5' untranslated region of BLCAP attaining genome wide significance in two point and sliding window analyses of probe methylation data, respectively. We conclude that recent alcohol use is associated with widespread changes in DNA methylation in women and that further study to confirm these findings and determine their relationship to somatic function are in order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA