Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Malar J ; 20(1): 63, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494779

RESUMO

BACKGROUND: This study reports an updated description on malaria vector diversity, behaviour, insecticide resistance and malaria transmission in the Diébougou and Dano peri-urban areas, Burkina Faso. METHODS: Mosquitoes were caught monthly using CDC light traps and pyrethrum spray catches. Mosquitoes were identified using morphological taxonomic keys. PCR techniques were used to identify the species of the Anopheles gambiae complex and insecticide resistance mechanisms in a subset of Anopheles vectors. The Plasmodium sporozoite infection status and origins of blood meals of female mosquitoes were determined by ELISA methods. Larvae were collected, breed in the insectary and tested for phenotypic resistance against four insecticides using WHO bioassays. RESULTS: This study contributed to update the entomological data in two peri-urban areas of Southwest Burkina Faso. Anopheles populations were mostly anthropophilic and endophilic in both areas and exhibit high susceptibility to an organophosphate insecticide. This offers an alternative for the control of these pyrethroid-resistant populations. These data might help the National Malaria Control Programme for decision-making about vector control planning and resistance management. CONCLUSIONS: This study contributed to update the entomological data in two peri-urban areas of Southwest Burkina Faso. Anopheles populations were mostly anthropophilic and endophilic in both areas and exhibit high susceptibility to an organophosphate insecticide. This offers an alternative for the control of these pyrethroid-resistant populations. These data might help the National Malaria Control Programme for decision-making about vector control planning and resistance management.


Assuntos
Anopheles/fisiologia , Biodiversidade , Resistência a Inseticidas , Malária/transmissão , Controle de Mosquitos , Mosquitos Vetores/fisiologia , Animais , Anopheles/efeitos dos fármacos , Antimaláricos/farmacologia , Burkina Faso , Meio Ambiente , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/efeitos dos fármacos , Estações do Ano
2.
Malar J ; 17(1): 136, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609597

RESUMO

BACKGROUND: A novel strategy applying an organophosphate-based insecticide paint on doors and windows in combination with long-lasting insecticide-treated nets (LLINs) was tested for the control of pyrethroid-resistant malaria vectors in a village setting in Vallée du Kou, a rice-growing area west of Burkina Faso. METHODS: Insecticide Paint Inesfly 5A IGR™, comprised of two organophosphates and an insect growth regulator, was applied to doors and windows and tested in combination with pyrethroid-treated LLINs. The killing effect was monitored for 5 months by early morning collections of anophelines and other culicids. The residual efficacy was evaluated monthly by WHO bioassays using Anopheles gambiae 'Kisumu' and local populations of Anopheles coluzzii resistant to pyrethroids. The spatial mortality efficacy (SME) at distances of 1 m was also assessed against pyrethroid-susceptible and -resistant malaria vectors. The frequency of L1014F kdr and Ace-1 R G119S mutations was, respectively, reported throughout the study. The Insecticide Paint Inesfly 5A IGR had been tested in past studies yielding a long-term mortality rate of 80% over 12 months against An. coluzzii, the local pyrethroid-resistant malaria vector. The purpose of the present study is to test if treating smaller, targeted surfaces (e.g. doors and windows) was also efficient in killing malaria vectors. RESULTS: Treating windows and doors alone yielded a killing efficacy of 100% for 1 month against An. coluzzii resistant to pyrethroids, but efficacy reduced quickly afterwards. Likewise, WHO cone bioassays yielded mortalities of 80-100% for 2 months but declined to 90 and 40% 2 and 3 months after treatment, respectively. Mosquitoes exposed to insecticide paint-treated surfaces at distances of 1 m, yielded mortality rates of about 90-80% against local pyrethroids-resistant An. coluzzii during the first 2 months, but decreased to 30% afterwards. Anopheles coluzzii was reported to be exclusively the local malaria vector and resistant to pyrethroids with high L1014 kdr frequency. CONCLUSION: The combination of insecticide paint on doors and windows with LLINs yielded high mortality rates in the short term against wild pyrethroid-resistant malaria vector populations. A high SME was observed against laboratory strains of pyrethroid-resistant malaria vectors placed for 30 min at 1 m from the treated/control walls. The application of the insecticide paint on doors and windows led to high but short-lasting mortality rates. The strategy may be an option in a context where low cost, rapid responses need to be implemented in areas where malaria vectors are resistant to pyrethroids.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Controle de Mosquitos , Organofosfatos/farmacologia , Pintura , Animais , Burkina Faso , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Piretrinas/farmacologia
3.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38712209

RESUMO

Male mosquitoes form aerial aggregations, known as swarms, to attract females and maximize their chances of finding a mate. Within these swarms, individuals must be able to recognize potential mates and navigate the dynamic social environment to successfully intercept a mating partner. Prior research has almost exclusively focused on the role of acoustic cues in mediating the male mosquito's ability to recognize and pursue flying females. However, the role of other sensory modalities in this behavior has not been explored. Moreover, how males avoid collisions with one another in the dense swarm while pursuing females remains poorly understood. In this study, we combined free-flight and tethered flight simulator experiments to demonstrate that swarming Anopheles coluzzii mosquitoes integrate visual and acoustic information to track conspecifics and avoid collisions. Our tethered experiments revealed that acoustic stimuli gated mosquito steering responses to visual objects simulating nearby mosquitoes, especially in males that exhibited attraction to visual objects in the presence of female flight tones. Additionally, we observed that visual cues alone could trigger changes in mosquitoes' wingbeat amplitude and frequency. These findings were corroborated by our free-flight experiments, which revealed that mosquitoes modulate their flight responses to nearby conspecifics in a similar manner to tethered animals, allowing for collision avoidance within swarms. Together, these results demonstrate that both males and females integrate multiple sensory inputs to mediate swarming behavior, and for males, the change in flight kinematics in response to multimodal cues allows them to simultaneously track females while avoiding collisions.

4.
Sci Rep ; 12(1): 2561, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169252

RESUMO

The sterile insect technique is a promising environmentally friendly method for mosquito control. This technique involves releasing laboratory-produced sterile males into a target field site, and its effectiveness may be affected by the extent of adult mosquito predation. Sterile males undergo several treatments. Therefore, it is vital to understand which treatments are essential in minimizing risks to predation once released. The present study investigates the predation propensity of four mantis species (Phyllocrania paradoxa, Hymenopus coronatus, Blepharopsis mendica, Deroplatys desiccata) and two gecko species (Phelsuma standingi, P. laticauda) on adult Aedes aegypti, Ae. albopictus and Anopheles arabiensis mosquitoes in a laboratory setting. First, any inherent predation preferences regarding mosquito species and sex were evaluated. Subsequently, the effects of chilling, marking, and irradiation, on predation rates were assessed. The selected predators effectively preyed on all mosquito species regardless of the treatment. Predation propensity varied over days for the same individuals and between predator individuals. Overall, there was no impact of laboratory treatments of sterile males on the relative risk of predation by the test predators, unless purposely exposed to double the required sterilizing irradiation dose. Further investigations on standardized predation trials may lead to additional quality control tools for irradiated mosquitoes.


Assuntos
Aedes , Lagartos , Mantódeos , Controle de Mosquitos/métodos , Comportamento Predatório , Animais
5.
Nat Ecol Evol ; 6(11): 1676-1686, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36109656

RESUMO

Cues involved in mate seeking and recognition prevent hybridization and can be involved in speciation processes. In malaria mosquitoes, females of the two sibling species Anopheles gambiae s.s. and An. coluzzii mate in monospecific male swarms and hybrids are rare. Long-range sex pheromones driving this behaviour have been debated in literature but so far, no study has proven their existence or their absence. Here, we attempted to bring to light their existence. To put all the odds in our favour, we used different chemical ecology methods such as behavioural and electrophysiological assays as well chemical analyses, and we worked with mosquitoes at their optimal physiological mating state that is with swarming males during their natural swarming windows. Despite all our efforts, our results support the absence of long-range sex pheromones involved in swarm detection and recognition by females. We briefly discuss the implications of this finding in ecology, evolution and for control strategies.


Assuntos
Anopheles , Malária , Atrativos Sexuais , Animais , Feminino , Masculino , Feromônios , Comportamento Sexual Animal/fisiologia , Anopheles/fisiologia
6.
J Med Entomol ; 58(2): 781-786, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33164064

RESUMO

Indoor residual spraying (IRS) was applied in addition to the use of long-lasting insecticidal nets in the South West in Burkina Faso, where Anopheles gambiae s.l. the major malaria vector was resistant to pyrethroids. This study was designed to evaluate the efficacy and residual life of bendiocarb (active ingredient) used for spraying on different wall surfaces (mud and cement). Cone bioassays were done monthly with the susceptible An. gambiae 'Kisumu' strain and the local wild populations to determine the duration for which insecticide was effective in killing mosquitoes. Cone bioassay data showed low efficacy and short persistence of bendiocarb applied on mud and cement walls, lasting 2 mo with the susceptible insectary strain and less than 1 mo with An. gambiae wild populations. In addition, WHO tube assays confirmed resistance of An. gambiae wild populations to 0.1% bendiocarb with mortality rates less than 80% in both study sites (sprayed and unsprayed sites). The pilot study of IRS with bendiocarb showed that the residual efficacy of bendiocarb was very short, and resistance to bendiocarb was confirmed in wild populations of An. gambiae s.l. Therefore, Ficam 80 WP was not suitable for IRS in this area due to the short residual duration related mainly to vectors resistance to bendiocarb. While waiting for innovative malaria control tool, alternative insecticide (organophosphate or neonicotinoid classes) or combinations of insecticides have to be used for insecticide resistance management in Burkina Faso.


Assuntos
Anopheles/efeitos dos fármacos , Fenilcarbamatos/farmacologia , Animais , Bioensaio , Burkina Faso , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Projetos Piloto , Piretrinas/farmacologia
7.
Parasit Vectors ; 13(1): 266, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434542

RESUMO

BACKGROUND: The sterile insect technique (SIT) is a vector control strategy relying on the mass release of sterile males into wild vector populations. Current sex separation techniques are not fully efficient and could lead to the release of a small proportion of females. It is therefore important to evaluate the effect of irradiation on the ability of released females to transmit pathogens. This study aimed to assess the effect of irradiation on the survival and competence of Anopheles arabiensis females for Plasmodium falciparum in laboratory conditions. METHODS: Pupae were irradiated at 95 Gy of gamma-rays, and emerging females were challenged with one of 14 natural isolates of P. falciparum. Seven days post-blood meal (dpbm), irradiated and unirradiated-control females were dissected to assess the presence of oocysts, using 8 parasite isolates. On 14 dpbm, sporozoite dissemination in the head/thorax was also examined, using 10 parasites isolates including 4 in common with the 7 dpbm dissection (oocyst data). The survivorship of irradiated and unirradiated-control mosquitoes was monitored. RESULTS: Overall, irradiation reduced the proportion of mosquitoes infected with the oocyst stages by 17% but this effect was highly inconsistent among parasite isolates. Secondly, there was no significant effect of irradiation on the number of developing oocysts. Thirdly, there was no significant difference in both the sporozoite infection rate and load between the irradiated and unirradiated-control mosquitoes. Fourthly, irradiation had varying effects on female survival with either a negative effect or no effect. CONCLUSIONS: The effect of irradiation on mosquito competence strongly varied among parasite isolates. Because of such isolate variability and, the fact that different parasite isolates were used to collect oocyst and sporozoite data, the irradiation-mediated reduction of oocyst prevalence was not confirmed for the sporozoite stages. Our data indicate that irradiated female An. arabiensis could contribute to malaria transmission, and highlight the need for perfect sexing tools, which would prevent the release of females as part of SIT programmes.


Assuntos
Anopheles/parasitologia , Anopheles/efeitos da radiação , Raios gama , Controle de Mosquitos/métodos , Plasmodium falciparum/fisiologia , Animais , Anopheles/fisiologia , Sangue , Comportamento Alimentar , Feminino , Mosquitos Vetores/parasitologia , Mosquitos Vetores/efeitos da radiação , Oocistos/fisiologia , Pupa/efeitos da radiação
8.
Parasit Vectors ; 12(1): 589, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842944

RESUMO

BACKGROUND: Mating swarm segregation in closely related insect species may contribute to reproductive isolation. Visual markers are used for swarm formation; however, it is unknown whether they play a key role in swarm location, species segregation and sex aggregation. METHODS: Using two sympatric closely related species of the Anopheles gambiae complex, An. coluzzii and An. gambiae (s.s.), we investigated in both laboratory and semi-field conditions (i) whether males of the two species use visual markers (black cloths) to locate their swarm; and (ii) whether the presence/absence and size of the marker may differentially affect swarm characteristics. We also investigated whether conspecific virgin females use these markers to join male swarm sites. RESULTS: We showed that males of the two species used visual markers but in different ways: An. coluzzii swarm right above the marker whereas An. gambiae (s.s.) locate their swarm at a constant distance of 76.4 ± 0.6 cm from a 20 × 20 cm marker in the laboratory setup and at 206 ± 6 cm from a 60 × 60 cm marker in the semi-field setup. Although increased marker size recruited more mosquitoes and consequently increased the swarm size in the two species, An. coluzzii swarms flew higher and were stretched both vertically and horizontally, while An. gambiae (s.s.) swarms were only stretched horizontally. Virgin females displayed a swarm-like behavior with similar characteristics to their conspecific males. CONCLUSIONS: Our results provided experimental evidence that both An. coluzzii and An. gambiae (s.s.) males use ground visual markers to form and locate their swarm at species-specific locations. Moreover, the marker size differentially affected swarm characteristics in the two species. Our results also showed that virgin females displayed a swarm-like behavior. However, these "swarms" could be due to the absence of males in our experimental conditions. Nevertheless, the fact that females displayed these "swarms" with the same characteristics as their respective males provided evidence that visual markers are used by the two sexes to join mating spots. Altogether, this suggests that visual markers and the way species and sexes use them could be key cues in species segregation, swarm location and recognition.


Assuntos
Anopheles/fisiologia , Sinais (Psicologia) , Comportamento Sexual Animal , Visão Ocular , Percepção Visual , Animais , Feminino , Masculino
9.
Parasit Vectors ; 11(1): 641, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558681

RESUMO

BACKGROUND: The sterile insect technique (SIT) aims at suppressing or decreasing insect pest populations by introducing sterile insects into wild populations. SIT requires the mass-production of insects and their sterilization through, for example, radiation. However, both mass-rearing and radiation can affect the life history traits of insects making them less competitive than their wild counterparts. In the malaria mosquito Anopheles arabiensis, some progress has been made to improve the mating competitiveness of mass-reared irradiated males. However, to date, no study has explored the relative effects of colonization and irradiation on important reproductive traits in this species. Such data may help to focus research efforts more precisely to improve current techniques. METHODS: Two strains of An. arabiensis originating from the same locality were used: one reared in the laboratory for five generations and the second collected as late larval instars in the field prior to experimentation. Pupae were irradiated with 95 Gy and some adult reproductive traits, including insemination rate, fecundity, oviposition behavior, fertility and male survivorship, were assessed in different mating combinations. RESULTS: Our study revealed the different effects of mosquito strain and irradiation on reproductive processes. The insemination rate was higher in field (67.3%) than in laboratory (54.9%) females and was negatively affected by both female and male irradiation (un-irradiated vs irradiated: 70.2 vs 51.3% in females; 67.7 vs 53.7% in males). Irradiated females did not produce eggs and egg prevalence was lower in the field strain (75.4%) than in the laboratory strain (83.9%). The hatching rate was higher in the field strain (88.7%) than in the laboratory strain (70.6%) as well as in un-irradiated mosquitoes (96.5%) than in irradiated ones (49%). Larval viability was higher in the field strain (96.2%) than in the laboratory strain (78.5%) and in un-irradiated mosquitoes (97.6%) than irradiated ones (52%). Finally, field males lived longer than laboratory males (25.1 vs 20.5 days, respectively). CONCLUSIONS: Our results revealed that both irradiation and colonization alter reproductive traits. However, different developmental stages are not equally affected. It is necessary to consider as many fitness traits as possible to evaluate the efficacy of the sterile insect technique.


Assuntos
Anopheles/fisiologia , Anopheles/efeitos da radiação , Controle de Mosquitos/métodos , Animais , Feminino , Masculino , Mosquitos Vetores/fisiologia , Mosquitos Vetores/efeitos da radiação , Oviposição/efeitos da radiação , Pupa/fisiologia , Pupa/efeitos da radiação , Radiação , Reprodução/efeitos da radiação , Comportamento Sexual Animal/efeitos da radiação
10.
Acta Trop ; 148: 162-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25959771

RESUMO

A pilot study to test the efficacy of combining an organophosphate-based insecticide paint and pyrethroid-treated Long Lasting Insecticide Treated Nets (LLINs) against pyrethroid-resistant malaria vector mosquitoes was performed in a real village setting in Burkina Faso. Paint Inesfly 5A IGR™, comprised of two organophosphates (OPs) and an Insect Growth Regulator (IGR), was tested in combination with pyrethroid-treated LLINs. Efficacy was assessed in terms of mortality for 12 months using Early Morning Collections of malaria vectors and 30-minute WHO bioassays. Resistance to pyrethroids and OPs was assessed by detecting the frequency of L1014F and L1014S kdr mutations and Ace-1(R)G119S mutation, respectively. Blood meal origin was identified using a direct enzyme-linked immunosorbent assay (ELISA). The combination of Inesfly 5A IGR™ and LLINs was effective in killing 99.9-100% of malaria vector populations for 6 months regardless of the dose and volume treated. After 12 months, mortality rates decreased to 69.5-82.2%. The highest mortality rates observed in houses treated with 2 layers of insecticide paint and a larger volume. WHO bioassays supported these results: mortalities were 98.8-100% for 6 months and decreased after 12 months to 81.7-97.0%. Mortality rates in control houses with LLINs were low. Collected malaria vectors consisted exclusively of Anopheles coluzzii and were resistant to pyrethroids, with a L1014 kdr mutation frequency ranging from 60 to 98% through the study. About 58% of An. coluzzii collected inside houses had bloodfed on non-human animals. Combining Inesfly 5A IGR™ and LLINs yielded a one year killing efficacy against An. coluzzii highly resistant to pyrethroids but susceptible to OPs that exhibited an anthropo-zoophilic behaviour in the study area. The results obtained in a real setting supported previous work performed in experimental huts and underscore the need to study the impact that this novel strategy may have on clinical malaria and malaria exposure in children in a similar area of high pyrethroid resistance in South-Western Burkina Faso.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas/genética , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Hormônios Juvenis/farmacologia , Malária/prevenção & controle , Pintura , Animais , Anopheles/genética , Burkina Faso , Clorpirifos/farmacologia , Diazinon/farmacologia , Ensaio de Imunoadsorção Enzimática , Humanos , Insetos Vetores/genética , Controle de Mosquitos/métodos , Organofosfatos/farmacologia , Projetos Piloto , Piretrinas/farmacologia , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA