Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7999): 661-669, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267581

RESUMO

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.


Assuntos
Bactérias , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Transcrição Gênica , Bactérias/genética , Replicação do DNA/genética , Dosagem de Genes/genética , Redes Reguladoras de Genes , Genoma Bacteriano/genética , Óperon/genética , Análise de Sequência de RNA , Transcrição Gênica/genética , Cromossomos Bacterianos/genética
2.
Infect Immun ; 92(2): e0052623, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38235972

RESUMO

Staphylococcus aureus is a gram-positive pathogen that poses a major health concern, in part due to its large array of virulence factors that allow infection and evasion of the immune system. One of these virulence factors is the bicomponent pore-forming leukocidin LukAB. The regulation of lukAB expression is not completely understood, especially in the presence of immune cells such as human polymorphonuclear neutrophils (hPMNs). Here, we screened for transcriptional regulators of lukAB during the infection of primary hPMNs. We uncovered that PerR, a peroxide sensor, is vital for hPMN-mediated induction of lukAB and that PerR upregulates cytotoxicity during the infection of hPMNs. Exposure of S. aureus to hydrogen peroxide (H2O2) alone also results in increased lukAB promoter activity, a phenotype dependent on PerR. Collectively, our data suggest that S. aureus uses PerR to sense the H2O2 produced by hPMNs to stimulate the expression of lukAB, allowing the bacteria to withstand these critical innate immune cells.IMPORTANCEStaphylococcus aureus utilizes a diverse set of virulence factors, such as leukocidins, to subvert human neutrophils, but how these toxins are regulated is incompletely defined. Here, we identified the peroxide-sensitive repressor, PerR, as a required protein involved in the induction of lukAB in the presence of primary human neutrophils, a phenotype directly linked to the ability of PerR to sense H2O2. Thus, we show that S. aureus coordinates sensing and resistance to oxidative stress with toxin production to promote pathogen survival.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Neutrófilos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Leucocidinas , Infecções Estafilocócicas/microbiologia
3.
Cytokine ; 89: 68-75, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27692729

RESUMO

Midkine is a multifunctional cytokine and growth factor displaying proinflammatory and pro-tumorigenic activity. Its association with bowel diseases has not been fully elucidated. Our purpose was to delineate midkine expression pattern by RT-qPCR in inflamed/cancerous bowel (n=208) and whole blood (n=150) in colorectal cancer (CRC), Crohn's disease (CD), and ulcerative colitis (UC) and to evaluate midkine dynamics in early postoperative period following colorectal surgery. The expression of midkine was significantly up-regulated in stage III CRC and independently associated with lymph node metastasis. The expression of midkine in whole blood was up-regulated solely in N1 CRC. Midkine expression in cancer-free tissue (CRC) was also elevated and dependent on CRC advancement. In IBD, inflammation increased the bowel expression of midkine solely in UC, in a manner proportional to the disease clinical activity. Large and small bowel differed with respect to the expression of midkine in quiescent tissue (higher in small bowel) and to its correlation pattern with chemokines (in a large bowel) and angiogenic factors and cell cycle regulators (in a small bowel). Circulating midkine and its expression in whole blood dropped directly following colorectal surgery; however, the concentration of midkine in serum was restored on postoperative day three. Midkine is involved in bowel inflammation in UC and lymph node metastasis in CRC, rendering midkine an attractive target for their treatment. Owing to midkine elevation in early postoperative period and its overexpression in tumor-adjacent tissue, targeting midkine might be considered also as a prevention of CRC recurrence following curative tumor resection.


Assuntos
Colite Ulcerativa/metabolismo , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Intestino Grosso/metabolismo , Intestino Delgado/metabolismo , Proteínas de Neoplasias/biossíntese , Fatores de Crescimento Neural/biossíntese , Regulação para Cima , Colite Ulcerativa/patologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Intestino Grosso/patologia , Intestino Delgado/patologia , Metástase Linfática , Masculino , Midkina
4.
Foodborne Pathog Dis ; 14(4): 223-230, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28072918

RESUMO

Seventeen Staphylococcus aureus strains were tested for production of staphylococcal enterotoxin D (SED) and staphylococcal enterotoxin R (SER) in milk and meat juice. SED was secreted in milk by 12 S. aureus strains at 6-54 ng/mL at 24 h and 9-98 ng/mL at 48 h. Another five strains secreted SED at 0.9-1.9 µg/mL at 24 h and at 1.2-2.4 µg/mL at 48 h. Strains producing high levels of SED in milk secreted 77-666 µg/mL of SED in meat juice at 24 h and 132-1225 µg/mL at 48 h. Strains producing lower amounts of SED in milk secreted 228-1109 ng/mL of SED at 24 h and 377-1782 ng/mL at 48 h in meat juice. Tested S. aureus strains produced SER in milk at 33-183 ng/mL at 24 h and 41-832 ng/mL at 48 h. Fourteen strains produced more SER in meat juice than in milk (17- to 232-fold and 15- to 269-fold more at 24 and 48 h, respectively). Three S. aureus strains secreted less than 74 ng/mL of SER in meat juice. Expression pattern of known enterotoxin regulators, that is, agrA, sarA, hld, rot, and sigB, was similar in selected strong and weak SED producers grown in both food matrices and could not explain differences in enterotoxin protein level. This suggests that enterotoxin regulation is more complex than previously thought. We demonstrated that in a number of tested S. aureus strains, production of SED and SER was significantly decreased in milk when compared with meat juice, supporting previous reports. However, certain strains secreted high amounts of SED and SER, irrespective of environment, likely contributing to higher food safety risk.


Assuntos
Enterotoxinas/metabolismo , Carne/microbiologia , Leite/microbiologia , Staphylococcus aureus/isolamento & purificação , Animais , Enterotoxinas/genética , Análise de Alimentos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , RNA Bacteriano/isolamento & purificação , Staphylococcus aureus/metabolismo
5.
J Dairy Sci ; 98(10): 7090-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26233445

RESUMO

Bovine mastitis caused by Streptococcus canis is relatively rare. Consequently, many epidemiologic aspects of the infection, including factors that mediate crossing of host species barriers by the pathogen, infectiousness of the microorganism to the mammary gland, and the course of the disease within a herd, are still not elucidated. Therefore, the aim of the present study was to describe results of a 15-mo observation of subclinical Strep. canis mastitis on a dairy farm housing 76 lactating Holstein-Friesian cows. Upon 3 visits to the farm during a period between April 2013 and June 2014, Strep. canis was cultured from milk samples of 17 (22.4% of the herd), 7 (9.6%), and 8 (11.3%) cows, respectively. The isolates obtained were characterized phenotypically by means of the API Strep identification kit (bioMérieux, Marcy l'Etoile, France), as well as genetically by using random amplified polymorphic DNA and macrorestriction analysis of the chromosomal DNA by pulsed-field gel electrophoresis. All strains displayed the same biochemical features, and the molecular methods revealed that the isolates belonged to a single clone or were very closely related. Results of the study indicate that Strep. canis is capable of causing intramammary infections of long duration, behaving in a contagious manner. Because a persistently infected cow may serve as the source of Strep. canis infection for other animals, effective control of this type of udder infection within a herd may require similar measures to those adopted in Streptococcus agalactiae eradication programs.


Assuntos
Mastite Bovina/microbiologia , Infecções Estreptocócicas/veterinária , Animais , Bovinos , DNA Bacteriano/análise , Eletroforese em Gel de Campo Pulsado , Feminino , França , Lactação , Glândulas Mamárias Animais , Mastite Bovina/prevenção & controle , Leite , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus/classificação , Streptococcus/genética , Streptococcus/isolamento & purificação
6.
J Zoo Wildl Med ; 45(3): 635-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25314832

RESUMO

Postmortem examination of a 43-yr-old male southern white rhinoceros (Ceratotherium simum simum) revealed gross lesions and histopathologic findings consistent with endocarditis. The animal was born in Umfolozi National Park, South Africa, and then it was moved at 2 yr of age to two successive European zoologic collections. For several weeks prior to death, the animal was increasingly recumbent or assuming a dog-sitting position. Postmortem examination revealed cutaneous pressure sores and multiple rough nodular structures on the mitral valve and left ventricular endocardium. Histopathologic examination revealed vegetative endocarditis, myocardial and hepatocellular degeneration, hepatic fibrosis, and chronic nephritis. Bacterial culture from the oral cavity, trachea, lung, skin, and heart isolated beta hemolytic Streptococcus dysgalactiae subsp. equisimilis and Streptococcus ovis. The cause of death was acute cardiopulmonary failure due mainly to endocarditis and moderate myocardial degeneration. Streptococcal infections are not uncommon causes of morbidity and mortality in rhinoceros. This is the first detailed report of streptococcal endocarditis in a rhinoceros.


Assuntos
Endocardite Bacteriana/veterinária , Perissodáctilos , Infecções Estreptocócicas/veterinária , Animais , Animais de Zoológico , Endocardite Bacteriana/microbiologia , Endocardite Bacteriana/patologia , Insônia Familiar Fatal , Masculino , Infecções Estreptocócicas/patologia
7.
bioRxiv ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38766195

RESUMO

Depletion of microbiota increases susceptibility to gastrointestinal colonization and subsequent infection by opportunistic pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). How the absence of gut microbiota impacts the evolution of MRSA is unknown. The present report used germ-free mice to investigate the evolutionary dynamics of MRSA in the absence of gut microbiota. Through genomic analyses and competition assays, we found that MRSA adapts to the microbiota-free gut through sequential genetic mutations and structural changes that enhance fitness. Initially, these adaptations increase carbohydrate transport; subsequently, evolutionary pathways largely diverge to enhance either arginine metabolism or cell wall biosynthesis. Increased fitness in arginine pathway mutants depended on arginine catabolic genes, especially nos and arcC, which promote microaerobic respiration and ATP generation, respectively. Thus, arginine adaptation likely improves redox balance and energy production in the oxygen-limited gut environment. Findings were supported by human gut metagenomic analyses, which suggest the influence of arginine metabolism on colonization. Surprisingly, these adaptive genetic changes often reduced MRSA's antimicrobial resistance and virulence. Furthermore, resistance mutation, typically associated with decreased virulence, also reduced colonization fitness, indicating evolutionary trade-offs among these traits. The presence of normal microbiota inhibited these adaptations, preserving MRSA's wild-type characteristics that effectively balance virulence, resistance, and colonization fitness. The results highlight the protective role of gut microbiota in preserving a balance of key MRSA traits for long-term ecological success in commensal populations, underscoring the potential consequences on MRSA's survival and fitness during and after host hospitalization and antimicrobial treatment.

8.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659881

RESUMO

We recently described the evolution of a community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 variant responsible for an outbreak of skin and soft tissue infections. Acquisition of a mosaic version of the Φ11 prophage (mΦ11) that increases skin abscess size was an early step in CA-MRSA adaptation that primed the successful spread of the clone. The present report shows how prophage mΦ11 exerts its effect on virulence for skin infection without encoding a known toxin or fitness genes. Abscess size and skin inflammation were associated with DNA methylase activity of an mΦ11-encoded adenine methyltransferase (designated pamA). pamA increased expression of fibronectin-binding protein A (fnbA; FnBPA), and inactivation of fnbA eliminated the effect of pamA on abscess virulence without affecting strains lacking pamA. Thus, fnbA is a pamA-specific virulence factor. Mechanistically, pamA was shown to promote biofilm formation in vivo in skin abscesses, a phenotype linked to FnBPA's role in biofilm formation. Collectively, these data reveal a novel mechanism-epigenetic regulation of staphylococcal gene expression-by which phage can regulate virulence to drive adaptive leaps by S. aureus.

9.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37333372

RESUMO

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.

10.
Elife ; 122024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687677

RESUMO

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio , Estresse Oxidativo , Percepção de Quorum , Staphylococcus aureus , Transativadores , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Staphylococcus aureus/metabolismo , Percepção de Quorum/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Transativadores/metabolismo , Transativadores/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Infecções Estafilocócicas/microbiologia , Viabilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo , Deleção de Genes
11.
Res Sq ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034646

RESUMO

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. These modes interact with a changing cellular environment to yield highly dynamic expression patterns2. In bacteria, the relationship between a gene's regulatory architecture and its expression is well understood for individual model gene circuits3,4. However, a broader perspective of these dynamics at the genome-scale is lacking, in part because bacterial transcriptomics have hitherto captured only a static snapshot of expression averaged across millions of cells5. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on each gene's transcriptional response to its own replication, which we term the Transcription-Replication Interaction Profile (TRIP). We found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal a gene's local regulatory context. While the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, including altered timing or amplitude of expression, and this is shaped by factors such as intra-operon position, repression state, or presence on mobile genetic elements. Our transcriptome analysis also simultaneously captures global properties, such as the rates of replication and transcription, as well as the nestedness of replication patterns. This work challenges previous notions of the drivers of expression heterogeneity within a population of cells, and unearths a previously unseen world of gene transcription dynamics.

12.
Cell Host Microbe ; 31(9): 1450-1468.e8, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37652008

RESUMO

Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium (Efm) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA that generates NOD2-stimulating muropeptides. NOD2 activation in myeloid cells induced interleukin-1ß (IL-1ß) secretion to increase the proportion of IL-22-producing CD4+ T helper cells and innate lymphoid cells that promote tissue repair. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.


Assuntos
Anti-Infecciosos , Enterococcus faecium , Doenças Inflamatórias Intestinais , Animais , Camundongos , Imunidade Inata , Linfócitos , Inflamação
13.
Cell Host Microbe ; 31(2): 228-242.e8, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36681080

RESUMO

The epidemic community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 lineage has recently become a leading cause of hospital-associated bloodstream infections (BSIs). Here, we leveraged this recent introduction into hospitals and the limited genetic variation across USA300 isolates to identify mutations that contribute to its success in a new environment. We found that USA300 BSI isolates exhibit altered virulence regulation. Using comparative genomics to delineate the genes involved in this phenotype, we discovered repeated and independent mutations in the transcriptional regulator sarZ. Mutations in sarZ resulted in increased virulence of USA300 BSI isolates in a murine model of BSI. The sarZ mutations derepressed the expression and production of the surface protein ClfB, which was critical for the pathogenesis of USA300 BSI isolates. Altogether, these findings highlight ongoing evolution of a major MRSA lineage and suggest USA300 strains can optimize their fitness through altered regulation of virulence.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus Resistente à Meticilina/genética , Virulência/genética , Infecção Hospitalar/epidemiologia
14.
Foodborne Pathog Dis ; 9(1): 91-3, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21988402

RESUMO

Sixty-seven staphylococcal isolates belonging to 12 species were obtained from 70 ready-to-eat food products. Staphylococcus aureus (n=25), and Staphylococcus epidermidis (n=13) were dominant. Susceptibility to penicillin, oxacillin, tetracycline, clindamycin, gentamicin, erythromycin, ciprofloxacin, and vancomycin was determined. All investigated S. aureus isolates were resistant to at least one antibiotic, and fifteen isolates were resistant to four and more antibiotics. Thirty-eight coagulase-negative staphylococci (CNS) isolates were resistant to at least one antibiotic, and seventeen to four and more antibiotics. Fifteen CNS isolates were mecA positive, and grew in the presence of 6 µg/mL oxacillin. All S. aureus isolates were mecA-negative. Arginine catabolic mobile element (ACME) was found in seven S. epidermidis isolates. Five S. epidermidis isolates harbored ica operon, ACME and were able to form biofilm. Three of them also possessed IS256 element and were mecA-positive. The expression of icaA gene was comparable in five ica-positive S. epidermidis isolates. One of six mecA positive S. epidermidis isolates was classified as sequence type (ST)155, one as ST110, and two as ST88. Two methicillin-resistant Staphylococcus epidermis (MRSE) belonged to new STs, that is, ST362, and ST363. Enterotoxin genes were found in 92% of S. aureus isolates. No enterotoxin gene was detected in analyzed CNS population. We show that ready-to-eat products are an important source of antibiotic-resistant CNS and potentially virulent strains of S. epidermidis, including genotypes undistinguishable from hospital-adapted clones.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Fast Foods/microbiologia , Contaminação de Alimentos/estatística & dados numéricos , Infecções Estafilocócicas/microbiologia , Staphylococcus/isolamento & purificação , Fatores de Virulência/genética , Antibacterianos/farmacologia , Coagulase/genética , Qualidade de Produtos para o Consumidor , DNA Bacteriano/genética , Microbiologia de Alimentos , Genes Bacterianos/genética , Genótipo , Testes de Sensibilidade Microbiana , Staphylococcus/genética , Staphylococcus/fisiologia , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/fisiologia
15.
Foodborne Pathog Dis ; 9(8): 762-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22827454

RESUMO

Staphylococcal enterotoxin D and R (SED, SER) production was determined in 24 S. aureus strains harboring sed gene. Seven of them were not able to produce SED as evidenced by enzyme-linked immunosorbent assay and Western blotting. Sequencing revealed that all these strains harbor a variant of sed gene. Expression of SER was detectable in 22 out of 24 isolates, with variance in productivity ranging from ∼40 to 450 ng/mL. Out of the seven isolates not able to produce SED, three produced high amounts of SER (249-396 ng/mL), two produced less than 200 ng/mL of SER, and two were found to express no detectable amount of SER. Three of those were assigned to spa type t1677 with two being of agr type III and one of agr type I. One strain was t084, agr type II, one t603, agr type II, one 2920, agr type III, one t2920, agr type III, and one t5160, agr type I. Because conventional screening procedures involve only the detection of classical enterotoxins in food, the isolates not able to produce SED presented in this study could pose a threat to human health due to SER production.


Assuntos
Enterotoxinas/biossíntese , Enterotoxinas/genética , Staphylococcus aureus/metabolismo , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Western Blotting , Clonagem Molecular , DNA Bacteriano/genética , Ensaio de Imunoadsorção Enzimática , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Análise de Sequência de DNA , Staphylococcus aureus/genética
16.
mBio ; 13(3): e0124022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35612285

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common causes of hospital-acquired pneumonia. To better manage patients with MRSA pneumonia, we require a greater understanding of the host-pathogen interactions during infection. MRSA research focuses on highly virulent and cytotoxic strains, which demonstrate robust phenotypes in animal models of infection. However, nosocomial infections are often caused by hospital-acquired MRSA (HA-MRSA) isolates that exhibit low cytotoxicity and few or no phenotypes in mice, thereby confounding mechanistic studies of pathogenesis. Consequently, virulence pathways utilized by HA-MRSA in nosocomial pneumonia are largely unknown. Here, we report that conditioning mice with broad-spectrum antibiotics lowers the barrier to pneumonia, thereby transforming otherwise avirulent HA-MRSA isolates into lethal pathogens. HA-MRSA isolates are avirulent in gnotobiotic mice, mimicking results in conventional animals. Thus, the observed enhanced susceptibility to infection in antibiotic-treated mice is not due to depletion of the microbiota. More generally, we found that antibiotic conditioning leads to increased susceptibility to infection by diverse antimicrobial-resistant (AMR) pathogens of low virulence. Treatment with antibiotics leads to dehydration and malnutrition, suggesting a potential role for these clinically relevant and reducible hospital complications in susceptibility to pathogens. In sum, the model described here mitigates the impact of low virulence in immunocompetent mice, providing a convenient model to gain fundamental insight into the pathogenesis of nosocomial pathogens. IMPORTANCE Antimicrobial-resistant (AMR) pathogens are responsible for over 2.8 million infections and over 35,000 deaths per year in the United States. To study these microbes, animal models that are susceptible to these pathogens are required. However, many of these pathogens exhibit low virulence in conventional mice, which has negatively impacted mechanistic studies. Here, we show that mice treated with antibiotics in their drinking water become exquisitely susceptible to low-virulence AMR pathogens. Surprisingly, the increased susceptibility was independent of the impact of antibiotics on the microbiome and seems to be due to an unintended consequence of antibiotic treatment: weight loss due to dehydration and caloric restriction. Unlike other models used to sensitize mice to low-virulence pathogens, our model does not reduce phagocyte numbers. Thus, here, we describe an immunocompetent mouse model to facilitate the identification of novel targets and accelerate the development of preventives and therapeutics to combat infections by AMR pathogens.


Assuntos
Infecções Comunitárias Adquiridas , Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Microbiota , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Desidratação , Modelos Animais de Doenças , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Testes de Sensibilidade Microbiana
17.
Cell Rep ; 41(2): 111477, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36223751

RESUMO

Innate immune recognition of bacterial pathogens is a key determinant of the ensuing systemic response, and host or pathogen heterogeneity in this early interaction can impact the course of infection. To gain insight into host response heterogeneity, we investigate macrophage inflammatory dynamics using primary human macrophages infected with Group B Streptococcus. Transcriptomic analysis reveals discrete cellular states within responding macrophages, one of which consists of four sub-states, reflecting inflammatory activation. Infection with six additional bacterial species-Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Yersinia pseudotuberculosis, Shigella flexneri, and Salmonella enterica-recapitulates these states, though at different frequencies. We show that modulating the duration of infection and the presence of a toxin impacts inflammatory trajectory dynamics. We provide evidence for this trajectory in infected macrophages in an in vivo model of Staphylococcus aureus infection. Our cell-state analysis defines a framework for understanding inflammatory activation dynamics in response to bacterial infection.


Assuntos
Infecções Bacterianas , Listeria monocytogenes , Infecções Bacterianas/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Listeria monocytogenes/genética , Macrófagos , Shigella flexneri
18.
Curr Microbiol ; 63(1): 87-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21573831

RESUMO

A total of 16 Pasteurella dagmatis strains, including 11 feline and 4 canine isolates as well as one strain isolated from a tiger, were analyzed using partial 16S rRNA and rpoB gene sequence comparison. Phylogenetic studies based on both genes revealed that the population of P. dagmatis recovered from cats in Poland differs markedly from canine strains, constituting a well-separated cluster within Pasteurella sensu stricto species group. The isolate from a tiger seems to represent yet another evolutionary lineage within P. dagmatis.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Variação Genética , Pasteurella/genética , Pasteurella/isolamento & purificação , RNA Ribossômico 16S/genética , Animais , Gatos/microbiologia , Reservatórios de Doenças/microbiologia , Cães/microbiologia , Dados de Sequência Molecular , Pasteurella/classificação , Faringe/microbiologia , Filogenia , Tigres/microbiologia
19.
Nat Microbiol ; 6(10): 1300-1308, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34518655

RESUMO

Staphylococcal pathogenicity islands (SaPIs) are a family of closely related mobile chromosomal islands that encode and disseminate the superantigen toxins, toxic shock syndrome toxin 1 and superantigen enterotoxin B (SEB). They are regulated by master repressors, which are counteracted by helper phage-encoded proteins, thereby inducing their excision, replication, packaging and intercell transfer. SaPIs are major components of the staphylococcal mobilome, occupying five chromosomal att sites, with many strains harbouring two or more. As regulatory interactions between co-resident SaPIs could have profound effects on the spread of superantigen pathobiology, we initiated the current study to search for such interactions. Using classical genetics, we found that, with one exception, their regulatory systems do not cross-react. The exception was SaPI3, which was originally considered defective because it could not be mobilized by any known helper phage. We show here that SaPI3 has an atypical regulatory module and is induced not by a phage but by many other SaPIs, including SaPI2, SaPIbov1 and SaPIn1, each encoding a conserved protein, Sis, which counteracts the SaPI3 repressor, generating an intracellular regulatory cascade: the co-resident SaPI, when conventionally induced by a helper phage, expresses its sis gene which, in turn, induces SaPI3, enabling it to spread. Using bioinformatics analysis, we have identified more than 30 closely related coancestral SEB-encoding SaPI3 relatives occupying the same att site and controlled by a conserved regulatory module, immA-immR-str'. This module is functionally analogous but unrelated to the typical SaPI regulatory module, stl-str. As SaPIs are phage satellites, SaPI3 and its relatives are SaPI satellites.


Assuntos
Ilhas Genômicas/genética , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Transferência Genética Horizontal , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/virologia , Ativação Transcricional
20.
J Food Prot ; 73(7): 1325-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20615346

RESUMO

In this study, the molecular characteristics of food-derived oxacillin-resistant Staphylococcus aureus were determined. Eight borderline oxacillin-resistant strains with MICs of 2 to 4 microg/ml were identified from 132 S. aureus isolates of food origin. One of the two isolates with a MIC of 4 microg/ml was methicillin-resistant determinant (mecA) gene positive, and the other six with MICs of 2 microg/ml were mecA negative. The mecA-positive isolate was classified as sequence type (ST)228, staphylococcal protein A (spa) type t041, and carried the staphylococcal cassette chromosome mec type I element. Two borderline oxacillin-resistant strains were classified as spa t008 and ST8, and the remaining five as spa t164 and ST20. The mecA-positive strain and four borderline oxacillin-resistant strains were found enterotoxigenic. The enterotoxin genes detected in these strains included selp, egc1, and sed-sej-selr. The borderline-resistant S. aureus isolates from a manually handled product, i.e., minced pork, were shown genetically related to strains associated with human infections. This suggests that humans can be considered as a source of contamination of this food with oxacillin-resistant S. aureus strains. The genotypes of the investigated milk borderline-resistant isolates were shown to occur not only in cows, but also in humans. Since manual handling is reduced in raw milk production, a human origin of S. aureus seems unlikely. Because knowledge of the genotypes of animal staphylococci is limited, more research is needed to address the question of the origin of antibiotic-resistant S. aureus strains in food.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Contaminação de Alimentos/análise , Oxacilina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Bovinos , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Genótipo , Humanos , Produtos da Carne/microbiologia , Testes de Sensibilidade Microbiana , Leite/microbiologia , Staphylococcus aureus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA