Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Circ Res ; 121(5): 537-548, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28637782

RESUMO

RATIONALE: Genome-wide association studies previously identified an association of rs9388451 at chromosome 6q22.3 (near HEY2) with Brugada syndrome. The causal gene and underlying mechanism remain unresolved. OBJECTIVE: We used an integrative approach entailing transcriptomic studies in human hearts and electrophysiological studies in Hey2+/- (Hey2 heterozygous knockout) mice to dissect the underpinnings of the 6q22.31 association with Brugada syndrome. METHODS AND RESULTS: We queried expression quantitative trait locus data acquired in 190 human left ventricular samples from the genotype-tissue expression consortium for cis-expression quantitative trait locus effects of rs9388451, which revealed an association between Brugada syndrome risk allele dosage and HEY2 expression (ß=+0.159; P=0.0036). In the same transcriptomic data, we conducted genome-wide coexpression analysis for HEY2, which uncovered KCNIP2, encoding the ß-subunit of the channel underlying the transient outward current (Ito), as the transcript most robustly correlating with HEY2 expression (ß=+1.47; P=2×10-34). Transcript abundance of Hey2 and the Ito subunits Kcnip2 and Kcnd2, assessed by quantitative reverse transcription-polymerase chain reaction, was higher in subepicardium versus subendocardium in both left and right ventricles, with lower levels in Hey2+/- mice compared with wild type. Surface ECG measurements showed less prominent J waves in Hey2+/- mice compared with wild-type. In wild-type mice, patch-clamp electrophysiological studies on cardiomyocytes from right ventricle demonstrated a shorter action potential duration and a lower Vmax in subepicardium compared with subendocardium cardiomyocytes, which was paralleled by a higher Ito and a lower sodium current (INa) density in subepicardium versus subendocardium. These transmural differences were diminished in Hey2+/- mice because of changes in subepicardial cardiomyocytes. CONCLUSIONS: This study uncovers a role of HEY2 in the normal transmural electrophysiological gradient in the ventricle and provides compelling evidence that genetic variation at 6q22.31 (rs9388451) is associated with Brugada syndrome through a HEY2-dependent alteration of ion channel expression across the cardiac ventricular wall.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Predisposição Genética para Doença/genética , Ventrículos do Coração/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Animais , Síndrome de Brugada/fisiopatologia , Eletrocardiografia/métodos , Feminino , Estudo de Associação Genômica Ampla/métodos , Ventrículos do Coração/fisiopatologia , Humanos , Canais Iônicos/biossíntese , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos
3.
Cardiovasc Res ; 118(7): 1742-1757, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34142125

RESUMO

AIMS: Cardiac arrhythmias comprise a major health and economic burden and are associated with significant morbidity and mortality, including cardiac failure, stroke, and sudden cardiac death (SCD). Development of efficient preventive and therapeutic strategies is hampered by incomplete knowledge of disease mechanisms and pathways. Our aim is to identify novel mechanisms underlying cardiac arrhythmia and SCD using an unbiased approach. METHODS AND RESULTS: We employed a phenotype-driven N-ethyl-N-nitrosourea mutagenesis screen and identified a mouse line with a high incidence of sudden death at young age (6-9 weeks) in the absence of prior symptoms. Affected mice were found to be homozygous for the nonsense mutation Bcat2p.Q300*/p.Q300* in the Bcat2 gene encoding branched chain amino acid transaminase 2. At the age of 4-5 weeks, Bcat2p.Q300*/p.Q300* mice displayed drastic increase of plasma levels of branch chain amino acids (BCAAs-leucine, isoleucine, valine) due to the incomplete catabolism of BCAAs, in addition to inducible arrhythmias ex vivo as well as cardiac conduction and repolarization disturbances. In line with these findings, plasma BCAA levels were positively correlated to electrocardiogram indices of conduction and repolarization in the German community-based KORA F4 Study. Isolated cardiomyocytes from Bcat2p.Q300*/p.Q300* mice revealed action potential (AP) prolongation, pro-arrhythmic events (early and late afterdepolarizations, triggered APs), and dysregulated calcium homeostasis. Incubation of human pluripotent stem cell-derived cardiomyocytes with elevated concentration of BCAAs induced similar calcium dysregulation and pro-arrhythmic events which were prevented by rapamycin, demonstrating the crucial involvement of mTOR pathway activation. CONCLUSIONS: Our findings identify for the first time a causative link between elevated BCAAs and arrhythmia, which has implications for arrhythmogenesis in conditions associated with BCAA metabolism dysregulation such as diabetes, metabolic syndrome, and heart failure.


Assuntos
Cálcio , Insuficiência Cardíaca , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Sirolimo
4.
Heart Rhythm ; 16(1): 98-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010057

RESUMO

BACKGROUND: Rare genetic variants in TNNI3K encoding troponin-I interacting kinase have been linked to a distinct syndrome consisting primarily of supraventricular tachycardias and variably expressed conduction disturbance and dilated cardiomyopathy in 2 families. OBJECTIVE: The purpose of this study was to identify new genetic variants associated with inherited supraventricular tachycardias, cardiac conduction disease, and cardiomyopathy. METHODS: We conducted next generation sequencing in 3 independent multigenerational families with atrial/junctional tachycardia with or without conduction disturbance, dilated cardiomyopathy, and sudden death. We also assessed the effect of identified variant on protein autophosphorylation. RESULTS: In this study, we uncovered the same ultra-rare genetic variant in TNNI3K (c.2302G>A, p.Glu768Lys), which co-segregated with disease features in all affected individuals (n = 23) from all 3 families. TNNI3K harboring the TNNI3K-p.Glu768Lys variant displayed enhanced kinase activity, in line with expectations from previous mouse studies that demonstrated increased conduction indices and procardiomyopathic effects with increased levels of Tnni3k. CONCLUSION: This study corroborates further the causal link between rare genetic variation in TNNI3K and this distinct complex phenotype, and points to enhanced kinase activity of TNNI3K as the underlying pathobiological mechanism.


Assuntos
Cardiomiopatia Dilatada/genética , DNA/genética , Sistema de Condução Cardíaco/fisiopatologia , Mutação , Proteínas Serina-Treonina Quinases/genética , Taquicardia Supraventricular/genética , Adolescente , Western Blotting , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/fisiopatologia , Células Cultivadas , Análise Mutacional de DNA , Feminino , Testes Genéticos , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Linhagem , Proteínas Serina-Treonina Quinases/metabolismo , Taquicardia Supraventricular/diagnóstico , Taquicardia Supraventricular/fisiopatologia , Adulto Jovem
5.
Methods Mol Biol ; 1488: 431-454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27933537

RESUMO

In this chapter, we will use the example of the identification of Tnni3k as a modulator of cardiac conduction to introduce you to the use of a murine F2-generation intercross as a powerful method for the identification of novel genes relevant for cardiovascular traits. Murine F2-progeny is a genetically diverse panel of mice with differences in phenotype manifestations, e.g. cardiovascular traits such as cardiomyopathy and ECG parameters. This chapter discusses the best strategies for using F2-mice for genetic mapping. Moreover, we provide an example of the feasibility of identification of new genes modulating cardiac function utilizing the technique of mapping quantitative trait loci (QTLs) and a systems genetics integration of available genetic, gene expression, and phenotypic data.


Assuntos
Fenômenos Fisiológicos Cardiovasculares/genética , Mapeamento Cromossômico , Estudos de Associação Genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Animais , Animais Geneticamente Modificados , Cruzamentos Genéticos , Bases de Dados Genéticas , Expressão Gênica , Haplótipos , Camundongos , Camundongos Endogâmicos , Mutação , Fenótipo
6.
Int J Cardiol ; 236: 187-193, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28262340

RESUMO

BACKGROUND: Mutations in SCN5A, the gene encoding the α-subunit of the cardiac sodium channel (NaV1.5), are associated with a broad spectrum of inherited cardiac arrhythmia disorders. The purpose of this study was to identify the genetic and functional determinants underlying a Dutch family that presented with a combined phenotype of ventricular arrhythmias with a likely adrenergic component, either in isolation or in combination with a mildly decreased heart function and early onset (<55years) atrial fibrillation. METHODS AND RESULTS: We performed next generation sequencing in the proband of a two-generation Dutch family and demonstrated a novel missense mutation in SCN5A-(p.M1851V) which co-segregated with the clinical phenotype in the family. We functionally evaluated the putative genetic defect by patch clamp electrophysiological studies in human embryonic kidney cells transfected with mutant or wild-type Nav1.5. The current inactivation was slower and recovery from inactivation was faster in SCN5A-M1851V channels. The voltage dependence of inactivation was shifted towards more positive potentials and consequently, a larger TTX-sensitive window current was observed in SCN5A-M1851V channels. Furthermore, a higher upstroke velocity was observed for the SCN5A-M1851V channels, while the depolarization voltage was more negative, both indicating increased excitability. CONCLUSIONS: This mutation leads to a gain-of-function mechanism based on increased channel availability and increased window current, fitting the observed clinical phenotype of (likely adrenergic-induced) ventricular arrhythmias and atrial fibrillation. These findings further expand the range of cardiac arrhythmias associated with mutations in SCN5A.


Assuntos
Fibrilação Atrial/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fibrilação Ventricular/genética , Adolescente , Adulto , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/fisiopatologia , Adulto Jovem
7.
J Am Coll Cardiol ; 63(6): 549-59, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24291282

RESUMO

OBJECTIVES: The aim of this study was to investigate the modulatory effect of the coxsackie and adenovirus receptor (CAR) on ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. BACKGROUND: A heritable component in the risk of ventricular fibrillation during myocardial infarction has been well established. A recent genome-wide association study of ventricular fibrillation during acute myocardial infarction led to the identification of a locus on chromosome 21q21 (rs2824292) in the vicinity of the CXADR gene. CXADR encodes the CAR, a cell adhesion molecule predominantly located at the intercalated disks of the cardiomyocyte. METHODS: The correlation between CAR transcript levels and rs2824292 genotype was investigated in human left ventricular samples. Electrophysiological studies and molecular analyses were performed using CAR haploinsufficient (CAR⁺/⁻) mice. RESULTS: In human left ventricular samples, the risk allele at the chr21q21 genome-wide association study locus was associated with lower CXADR messenger ribonucleic acid levels, suggesting that decreased cardiac levels of CAR predispose to ischemia-induced ventricular fibrillation. Hearts from CAR⁺/⁻ mice displayed slowing of ventricular conduction in addition to an earlier onset of ventricular arrhythmias during the early phase of acute myocardial ischemia after ligation of the left anterior descending artery. Expression and distribution of connexin 43 were unaffected, but CAR⁺/⁻ hearts displayed increased arrhythmia susceptibility on pharmacological electrical uncoupling. Patch-clamp analysis of isolated CAR⁺/⁻ myocytes showed reduced sodium current magnitude specifically at the intercalated disk. Moreover, CAR coprecipitated with NaV1.5 in vitro, suggesting that CAR affects sodium channel function through a physical interaction with NaV1.5. CONCLUSIONS: CAR is a novel modifier of ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. Genetic determinants of arrhythmia susceptibility (such as CAR) may constitute future targets for risk stratification of potentially lethal ventricular arrhythmias in patients with coronary artery disease.


Assuntos
Arritmias Cardíacas/etiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/fisiologia , Sistema de Condução Cardíaco/fisiopatologia , Isquemia Miocárdica/metabolismo , Função Ventricular , Animais , Carbenoxolona , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA