Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(5): 1440-1449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302561

RESUMO

Schizophrenia (SZ) is a serious mental illness and neuropsychiatric brain disorder with behavioral symptoms that include hallucinations, delusions, disorganized behavior, and cognitive impairment. Regulation of such behaviors requires utilization of neurotransmitters released to mediate cell-cell communication which are essential to brain functions in health and disease. We hypothesized that SZ may involve dysregulation of neurotransmitters secreted from neurons. To gain an understanding of human SZ, induced neurons (iNs) were derived from SZ patients and healthy control subjects to investigate peptide neurotransmitters, known as neuropeptides, which represent the major class of transmitters. The iNs were subjected to depolarization by high KCl in the culture medium and the secreted neuropeptides were identified and quantitated by nano-LC-MS/MS tandem mass spectrometry. Several neuropeptides were identified from schizophrenia patient-derived neurons, including chromogranin B (CHGB), neurotensin, and natriuretic peptide. Focusing on the main secreted CHGB neuropeptides, results revealed differences in SZ iNs compared to control iN neurons. Lower numbers of distinct CHGB peptides were found in the SZ secretion media compared to controls. Mapping of the peptides to the CHGB precursor revealed peptides unique to either SZ or control, and peptides common to both conditions. Also, the iNs secreted neuropeptides under both KCl and basal (no KCl) conditions. These findings are consistent with reports that chromogranin B levels are reduced in the cerebrospinal fluid and specific brain regions of SZ patients. These findings suggest that iNs derived from SZ patients can model the decreased CHGB neuropeptides observed in human SZ.


Assuntos
Cromogranina B , Neurônios , Neuropeptídeos , Neurotransmissores , Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Neuropeptídeos/metabolismo , Neurônios/metabolismo , Cromogranina B/metabolismo , Masculino , Neurotransmissores/metabolismo , Feminino , Espectrometria de Massas em Tandem/métodos , Adulto , Pessoa de Meia-Idade , Neurotensina/metabolismo , Células Cultivadas , Encéfalo/metabolismo
2.
J Huntingtons Dis ; 12(4): 315-333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38108356

RESUMO

BACKGROUND: Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat CAG expansions in the human HTT gene. Early onset juvenile HD (JHD) in children is the most severe form of the disease caused by high CAG repeat numbers of the HTT gene. OBJECTIVE: To gain understanding of human HD mechanisms hypothesized to involve dysregulated proteomes of brain regions that regulate motor and cognitive functions, this study analyzed the proteomes of human JHD cortex and putamen brain regions compared to age-matched controls. METHODS: JHD and age-matched control brain tissues were assessed for CAG repeat numbers of HTT by PCR. Human brain JHD brain cortex regions of BA4 and BA6 with the putamen region (n = 5) were analyzed by global proteomics, compared to age-matched controls (n = 7). Protein interaction pathways were assessed by gene ontology (GO), STRING-db, and KEGG bioinformatics. RESULTS: JHD brain tissues were heterozygous for one mutant HTT allele containing 60 to 120 CAG repeats, and one normal HTT allele with 10 to 19 CAG repeats. Proteomics data for JHD brain regions showed dysregulated mitochondrial energy pathways and changes in synaptic systems including peptide neurotransmitters. JHD compared to control proteomes of cortex and putamen displayed (a) proteins present only in JHD, (b) proteins absent in JHD, and (c) proteins that were downregulated or upregulated. CONCLUSIONS: Human JHD brain cortex and putamen regions display significant dysregulation of proteomes representing deficits in mitochondrial and synaptic neurotransmission functions. These findings advance understanding of JHD brain molecular mechanisms associated with HD disabilities.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Neuropeptídeos , Criança , Humanos , Putamen , Proteoma , Doença de Huntington/genética , Encéfalo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38125374

RESUMO

Tau propagation, pathogenesis, and neurotoxicity are hallmarks of neurodegenerative diseases that result in cognitive impairment. Tau accumulates in Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), chronic traumatic encephalopathy (CTE), progressive supranuclear palsy, and related tauopathies. Knowledge of the mechanisms for tau propagation in neurodegeneration is necessary for understanding the development of dementia. Exosomes, known as extracellular vesicles (EVs), have emerged as participants in promoting tau propagation. Recent findings show that EVs generated by neurons expressing familial mutations of tauopathies of FTDP-17 (P301L and V337M) (mTau) and presenilin (A246E) (mPS1) in AD induce tau propagation and accumulation after injection into rodent brain. To gain knowledge of the proteome cargoes of the mTau and mPS1 EVs that promote tau pathogenesis, this review compares the proteomes of these EVs, which results in important new questions concerning EV mechanisms of tau pathogenesis. Proteomics data show that EVs produced by mTau- and mPS1-expressing iPSC neurons share proteins involved in exocytosis and vesicle secretion and, notably, these EVs also possess differences in protein components of vesicle-mediated transport, extracellular functions, and cell adhesion. It will be important for future studies to gain an understanding of the breadth of familial genetic mutations of tau, presenilin, and other genes in promoting EV initiation of tau propagation and pathogenesis. Furthermore, elucidation of EV cargo components that mediate tau propagation will have potential as biomarkers and therapeutic strategies to ameliorate dementia of tauopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA