Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 577(7788): 52-59, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894146

RESUMO

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge1-8. Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation9-12, and this field is specific to the sample's molecular composition. Employing electro-optic sampling10,12-15, we directly measure this global molecular fingerprint down to field strengths 107 times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 105. This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.


Assuntos
Biomarcadores/sangue , Análise Química do Sangue/métodos , Soro/química , Espectrofotometria Infravermelho , Biomarcadores/química , Análise Química do Sangue/instrumentação , Humanos , Sensibilidade e Especificidade , Água/química
2.
Opt Lett ; 47(23): 6217-6220, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219211

RESUMO

Diode-pumped Cr:ZnS oscillators have emerged as precursors for single-cycle infrared pulse generation with excellent noise performance. Here we demonstrate a Cr:ZnS amplifier with direct diode-pumping to boost the output of an ultrafast Cr:ZnS oscillator with minimum added intensity noise. Seeded with a 0.66-W pulse train at 50-MHz repetition rate and 2.4 µm center wavelength, the amplifier provides over 2.2 W of 35-fs pulses. Due to the low-noise performance of the laser pump diodes in the relevant frequency range, the amplifier output achieves a root mean square (RMS) intensity noise level of only 0.03% in the 10 Hz-1 MHz frequency range and a long-term power stability of 0.13% RMS over one hour. The diode-pumped amplifier reported here is a promising driving source for nonlinear compression to the single- or sub-cycle regime, as well as for the generation of bright, multi-octave-spanning mid-infrared pulses for ultra-sensitive vibrational spectroscopy.

3.
Opt Lett ; 44(17): 4227-4230, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465368

RESUMO

Several approaches to power scaling of mode-locked thin-disk oscillators exist. One of these approaches is based on the increased gain provided by multiple passes through the thin-disk laser medium. For the first time, to the best of our knowledge, we applied this approach to a Kerr-lens mode-locked thin-disk oscillator. The so obtained additional gain allowed mode-locked operation with up to 50% output coupling rate. This first demonstration is of particular importance for gain media with inherently low-emission cross sections and paves the way to even more powerful Kerr-lens mode-locked thin-disk oscillators. Moreover, the experimental results indicate an increased self-amplitude modulation related to an overall increase in the soft-aperture Kerr-lens effect.

4.
Opt Lett ; 43(19): 4643-4646, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272703

RESUMO

In this work, we present a nonlinear spectral broadening and compression scheme based on self-phase modulation in bulk media inside a Herriott-type multipass cell. With this reliable approach, we achieved a spectral broadening factor of 22 while maintaining an efficiency of over 60% at an average input power of 100 W, and an excellent output beam quality with M2=1.2. The output pulses were compressed to 18 fs, with the broadest spectrum supporting a Fourier-transform limit of 10 fs. The high efficiency and approximately four-optical-cycle pulse duration mark an important milestone towards the realization of a compact, high power oscillator-based driver for XUV frequency combs and other nonlinear processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA