Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(42): e202401403, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38818578

RESUMO

Our society largely relies on inorganic semiconductor devices which are, so far, fabricated using expensive and complex processes requiring ultra-high vacuum equipment. Here we report on the possibility of growing a p-n junction taking advantage of electrochemical processes based on the use of aqueous solutions. The growth of the junction has been carried out using the Electrochemical Atomic Layer Deposition (E-ALD) technique, which allowed to sequentially deposit two different semiconductors, CdS and Cu2S, on an Ag(111) substrate, in a single procedure. The growth process was monitored in situ by Surface X-Ray Diffraction (SXRD) and resulted in the fabrication of a thin double-layer structure with a high degree of crystallographic order and a well-defined interface. The high-performance electrical characteristics of the device were analysed ex-situ and show the characteristic feature of a diode.

2.
Chemistry ; 29(42): e202301036, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150751

RESUMO

Hydrogen peroxide (H2 O2 ) electrosynthesis via the 2e- Oxygen Reduction Reaction (ORR) represents a highly challenging, environmentally friendly and cost-effective alternative to the current anthraquinone-based technology. Various lightweight element hetero-doped carbon nanostructures are promising and cheap metal-free electrocatalysts for H2 O2 synthesis, particularly those containing O-functionalities. The exact role of O-containing functional groups as electroactive sites for the process remains debated if not highly controversial. Herein, we have reported on the covalent exohedral functionalization of the outer surface of extra-pure multi-walled carbon nanotubes (MWCNTs) with discrete O-functional groups as a unique approach to prepare selective electrocatalysts for the process. This kind of decoration has added fundamental tiles to the puzzling structure/reactivity relationship of O-containing carbon-based catalysts for ORR, clearing doubts on the controversial role of hydroxyl/phenol groups as key functionalities for the design of more performing 2e- ORR electrocatalysts.

3.
Inorg Chem ; 62(6): 2848-2858, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36724054

RESUMO

Diamine-capped PtCu nanoparticles have been synthesized by the simultaneous reduction of the corresponding bis-imine metal complexes with hydrogen and supported onto a high-surface-area carbon. The obtained heterogeneous catalyst was tested in thermally conducted aerobic oxidation of ethanol to acetic acid in water as well as in the electrochemical oxidation of ethanol. Both types of catalyses mediated by the PtCu alloy confirmed a notable increase in catalytic activity compared to the pure Pt- and Cu-based counterparts due to a clear bimetallic effect.

4.
Nano Lett ; 22(21): 8509-8518, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36315593

RESUMO

Lithium metal batteries (LMBs) will be a breakthrough in automotive applications, but they require the development of next-generation solid-state electrolytes (SSEs) to stabilize the anode interface. Polymer-in-ceramic PEO/TiO2 nanocomposite SSEs show outstanding properties, allowing unprecedented LMBs durability and self-healing capabilities. However, the mechanism underlying the inhibition/delay of dendrite growth is not well understood. In fact, the inorganic phase could act as both a chemical and a mechanical barrier to dendrite propagation. Combining advanced in situ and ex situ experimental techniques, we demonstrate that oligo(ethylene oxide)-capped TiO2, although chemically inert toward lithium metal, imparts SSE with mechanical and dynamical properties particularly favorable for application. The self-healing characteristics are due to the interplay between mechanical robustness and high local polymer mobility which promotes the disruption of the electric continuity of the lithium dendrites (razor effect).

5.
Nano Lett ; 22(21): 8626-8632, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36256878

RESUMO

Organometallic sandwich complexes are versatile molecular systems that have been recently employed for single-molecule manipulation and spin sensing experiments. Among related organometallic compounds, the mixed-sandwich S = 1/2 complex (η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium, here [CpTi(cot)], has attracted interest as a spin qubit because of the long coherence time. Here the structural and chemical properties of [CpTi(cot)] on Au(111) are investigated at the monolayer level by experimental and computational methods. Scanning tunneling microscopy suggests that adsorption occurs in two molecular orientations, lying and standing, with a 3:1 ratio. XPS data evidence that a fraction of the molecules undergo partial electron transfer to gold, while our computational analysis suggests that only the standing molecules experience charge delocalization toward the surface. Such a phenomenon depends on intermolecular interactions that stabilize the molecular packing in the monolayer. This orientation-dependent molecule-surface hybridization opens exciting perspectives for selective control of the molecule-substrate spin delocalization in hybrid interfaces.


Assuntos
Elétrons , Titânio , Propriedades de Superfície , Microscopia de Tunelamento/métodos , Adsorção
6.
Nat Mater ; 19(5): 546-551, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32066930

RESUMO

Magnetic materials interfaced with superconductors may reveal new physical phenomena with potential for quantum technologies. The use of molecules as magnetic components has already shown great promise, but the diversity of properties offered by the molecular realm remains largely unexplored. Here we investigate a submonolayer of tetrairon(III) propeller-shaped single molecule magnets deposited on a superconducting lead surface. This material combination reveals a strong influence of the superconductor on the spin dynamics of the single molecule magnet. It is shown that the superconducting transition to the condensate state switches the single molecule magnet from a blocked magnetization state to a resonant quantum tunnelling regime. Our results open perspectives to control single molecule magnetism via superconductors and to use single molecule magnets as local probes of the superconducting state.

7.
Phys Chem Chem Phys ; 23(21): 12060-12067, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34013308

RESUMO

A terbium(iii)-bis(phthalocyaninato) neutral complex was deposited on the rutile TiO2(110) surface, and their interaction was studied by Scanning Tunneling Microscopy (STM) and X-ray Photoelectron Spectroscopy (XPS). It was found that the TiO2 rutile surface favours the adsorption of isolated molecules adopting a lying down configuration with the phthalocyanine planes tilted by about 30° when they lie in the first layer. The electronic and chemical properties of the molecules on the surface were studied by XPS as a function of the TiO2(110) substrate preparation. This study evidences that strong molecule-substrate interactions are present and a charge transfer process occurs from the molecule to the surface.

8.
Angew Chem Int Ed Engl ; 60(28): 15276-15280, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904633

RESUMO

In the past few years, the chirality and magnetism of molecules have received notable interest for the development of novel molecular devices. Chiral helicenes combine both these properties, and thus their nanostructuration is the first step toward developing new multifunctional devices. Here, we present a novel strategy to deposit a sub-monolayer of enantiopure thia[4]helicene radical cations on a pre-functionalized Au(111) substrate. This approach results in both the paramagnetic character and the chemical structure of these molecules being maintained at the nanoscale, as demonstrated by in-house characterizations. Furthermore, synchrotron-based X-ray natural circular dichroism confirmed that the handedness of the thia[4]helicene is preserved on the surface.

9.
Phys Chem Chem Phys ; 22(12): 6626-6637, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159166

RESUMO

The spin crossover (SCO) efficiency of [57Fe(bpz)2(phen)] (where bpz = bis(pyrazol-1-yl)borohydride and phen = 9,10-phenantroline) molecules deposited on gold substrates was investigated by means of synchrotron Mössbauer spectroscopy. The spin transition was driven thermally, or light induced via the LIESST (light induced excited spin-state trapping) effect. Both sets of measurements show that, once deposited on a gold substrate, the efficiency of the SCO mechanism is modified with respect to molecules in the bulk phase. A correlation in the distribution of hyperfine parameters in the sublimated films, not evidenced so far in the bulk phase, is reported. This translates into geometrical distortions of the first coordination sphere of the iron atom that seem to correlate with the decreased spin conversion. The work reported clearly shows the potentiality of synchrotron Mössbauer spectroscopy for the characterization of nanostructured Fe-based SCO systems, thus resulting as a key tool in view of their applications in innovative nanoscale devices.

10.
Small ; 14(5)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29226595

RESUMO

The complexation between 2-ureido-4[1H]-pyrimidinone (UPy) and 2,7-diamido-1,8-naphthyridine (NaPy) is used to promote the mild chemisorption of a UPy-functionalized terbium(III) double decker system on a silicon surface. The adopted strategy allows the single-molecule magnet behavior of the system to be maintained unaltered on the surface.

11.
Nano Lett ; 17(3): 1899-1905, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28165249

RESUMO

The magnetic properties of some single molecule magnets (SMM) on surfaces can be strongly modified by the molecular packing in nanometric films/aggregates or by interactions with the substrate, which affect the molecular orientation and geometry. Detailed investigations of the magnetism of thin SMM films and nanostructures are necessary for the development of spin-based molecular devices, however this task is challenged by the limited sensitivity of laboratory-based magnetometric techniques and often requires access to synchrotron light sources to perform surface sensitive X-ray magnetic circular dichroism (XMCD) investigations. Here we show that low-temperature magnetic force microscopy is an alternative powerful laboratory tool able to extract the field dependence of the magnetization and to identify areas of in-plane and perpendicular magnetic anisotropy in microarrays of the SMM terbium(III) bis-phthalocyaninato (TbPc2) neutral complex grown as nanosized films on SiO2 and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and this is in agreement with data extracted from nonlocal XMCD measurements performed on homogeneous TbPc2/PTCDA films.

12.
Nano Lett ; 15(1): 535-41, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25489967

RESUMO

We demonstrate that Fe4 molecules can be deposited on gold by thermal sublimation in ultra-high vacuum with retention of single molecule magnet behavior. A magnetic hysteresis comparable to that found in bulk samples is indeed observed when a submonolayer film is studied by X-ray magnetic circular dichroism. Scanning tunneling microscopy evidences that Fe4 molecules are assembled in a two-dimensional lattice with short-range hexagonal order and coexist with a smaller contaminant. The presence of intact Fe4 molecules and the retention of their bistable magnetic behavior on the gold surface are supported by density functional theory calculations.

13.
Small ; 10(2): 323-9, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23996936

RESUMO

The chemical synthesis and characterization of the first hybrid material composed by gold nanoparticles and single molecule magnets (SMMs) are described. Gold nanoparticles are functionalized via ligand exchange using a tetrairon(III) SMM containing two 1,2-dithiolane end groups. The grafting is evidenced by the shift of the plasmon resonance peak recorded with a UV-vis spectrometer, by the suppression of nuclear magnetic resonance signals, by X-ray photoemission spectroscopy peaks, and by transmission electron microscopy images. The latter evidence the formation of aggregates of nanoparticles as a consequence of the cross-linking ability of Fe4 through the two 1,2-dithiolane rings located on opposite sides of the metal core. The presence of intact Fe4 molecules is directly proven by synchrotron-based X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectroscopy, while a detailed magnetic characterization, obtained using electron paramagnetic resonance and alternating-current susceptibility, confirms the persistence of SMM behavior in this new hybrid nanostructure.

14.
Langmuir ; 30(29): 8645-9, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25000391

RESUMO

To work as magnetic components in molecular electronics and spintronics, single-molecule magnets (SMMs) must be reliably interfaced with metals. The organization on gold of a Fe4 SMM carrying two acetyl-protected thiol groups has been studied by exploiting the surface sensitivity of time-of-flight secondary ion mass spectrometry (ToF-SIMS), additionally powered by the use of an isotopic labeling strategy. Deposition from millimolar dichloromethane solutions results in a higher surface coverage and better packed monolayers as compared with previous protocols based on more diluted solutions. Fe4 complexes are chemically tethered to the surface via a single Au-S bond while they still contain an intact SAc group.

15.
J Mater Chem C Mater ; 12(27): 10029-10035, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39006148

RESUMO

The chirality-induced spin selectivity (CISS) effect is the capability of chiral molecules to act as spin filters, i.e. to selectively sort flowing electrons based on their spin states. The application of this captivating phenomenon holds great promise in the realm of molecular spintronics, where the primary focus lies in advancing technologies based on chiral molecules to regulate the injection and coherence of spin-polarized currents. In this context, we conducted a study to explore the spin filtering capabilities of a monolayer of the thia-bridged triarylamine hetero[4]helicene radical cation chemisorbed on a metallic surface. Magnetic-conductive atomic force microscopy revealed efficient electron spin filtering at exceptionally low potentials. Furthermore, we constructed a spintronic device by incorporating a monolayer of these molecules in between two electrodes, obtaining an asymmetric magnetoresistance trend with signal inversion in accordance with the handedness of the enantiomer involved, indicative of the presence of the CISS effect. Our findings underscore the significance of thia[4]azahelicene organic radicals as promising candidates for the development of quantum information operations based on the CISS effect as a tool to control the molecular spin states.

16.
Nanoscale ; 16(30): 14378-14386, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38993100

RESUMO

The decoration of technologically relevant surfaces, such as metal oxides, with Single-Molecule Magnets (SMMs) constitutes a persistent challenge for the integration of these molecular systems into novel technologies and, in particular, for the development of spintronic and quantum devices. We used UHV thermal sublimation to deposit tetrairon(III) propeller-shaped SMMs (Fe4) as a single layer on a TiO2 ultrathin film grown on Cu(001). The properties of the molecular deposit were studied using a multi-technique approach based on standard topographic and spectroscopic measurements, which demonstrated that molecules remain largely intact upon deposition. Ultralow temperature X-ray Absorption Spectroscopy (XAS) with linearly and circularly polarized light was further employed to evaluate both the molecular organization and the magnetic properties of the Fe4 monolayer. X-ray Natural Linear Dichroism (XNLD) and X-ray Magnetic Circular Dichroism (XMCD) showed that molecules in a monolayer display a preferential orientation and an open magnetic hysteresis with pronounced quantum tunnelling steps up to 900 mK. However, unexpected extra features in the XAS and XMCD spectra disclosed a minority fraction of altered molecules, suggesting that the TiO2 film may be chemically non-innocent. The observed persistence of SMM behaviour on a metal oxide thin film opens new possibilities for the development of SMM-based hybrid systems.

17.
Chem Sci ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39156928

RESUMO

Depositing single paramagnetic molecules on surfaces for sensing and quantum computing applications requires subtle topological control. To overcome issues that are often encountered with sandwich metal complexes, we exploit here the low symmetry architecture and suitable vaporability of mixed-sandwich [FluTi(cot)], Flu = fluorenyl, cot = cyclooctatetraene, to drive submonolayer coverage and select an adsorption configuration that preserves the spin of molecules deposited on Au(111). Electron paramagnetic resonance spectroscopy and ab initio quantum computation evidence a d z 2 ground state that protects the spin from phonon-induced relaxation. Additionally, computed and measured spin coherence times exceed 10 µs despite the molecules being rich in hydrogen. A thorough submonolayer investigation by scanning tunneling microscopy, X-ray photoelectron and absorption spectrocopies and X-ray magnetic circular dichroism measurements supported by DFT calculations reveals that the most stable configuration, with the fluorenyl in contact with the metal surface, prevents titanium(iii) oxidation and spin delocalization to the surface. This is a necessary condition for single molecular spin qubit addressing on surfaces.

18.
Inorg Chem ; 52(20): 11798-805, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24090074

RESUMO

A series of dinuclear cobalt complexes of general formula [Co(Mentpa)(diox-S-diox)Co(Mentpa)](PF6)2·MeOH (n = 0, 2, 3) was prepared through the synthesis of the bis-bidentate ligand 6,6'-((1,4-phenylenebis(methylene))bis(sulfanediyl))bis(3,5-di-tert-butyl-benzene-1,2-diol) (diox-S-diox). The ancillary ligands Mentpa are obtained by the tripodal tris(2-pyridylmethyl)amine (tpa) ligand through successive introduction of methyl groups into the 6 position of the pyridine moieties. As expected, the steric hindrance induced by this substitution modulates the redox properties of the metal acceptor, determining the charge distribution of the metal-dioxolene adduct at room temperature. Magnetic measurements and X-ray photoelectron and X-ray absorption spectroscopies indicate that the charge distributions low-spin-Co(III)-catecholate and high-spin-Co(II)-semiquinonate characterize the complexes formed by the tpa and Me3tpa tetradentate ligands, respectively. The complex formed by the Me2tpa ligand undergoes a thermal- and light-induced interconversion of the two states, in agreement with the existence of a valence tautomeric equilibrium. All complexes were stable and behaved reproducibly under X-ray irradiation. This work points out a fast and simple chemical approach to structurally and electronically modify the catechol ring while leaving its coordination capabilities unaffected. These findings afford a robust chemical method to prepare sulfur-functionalized dioxolene ligands as new molecular bricks for chemical functionalization of noble metal surfaces with this class of molecular switches.

19.
Inorg Chem ; 52(10): 5897-905, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23659465

RESUMO

A new tetrairon(III) single-molecule magnet with enhanced volatility and processability was obtained by partial fluorination of the ancillary ß-diketonato ligands. Fluorinated proligand Hpta = pivaloyltrifluoroacetone was used to assemble the bis(alkoxido)-bridged dimer [Fe2(OEt)2(pta)4] (1) in crystalline form, from which the new tetranuclear complex [Fe4(L)2(pta)6] (2) was synthesized in a one-pot reaction with H3L = 2-hydroxymethyl-2-phenylpropane-1,3-diol, NaOEt, and FeCl3 in a Et2O:EtOH solvent mixture. The structure of compound 2 was inferred from (1)H NMR, mass spectrometry, magnetic measurements, and DFT calculations. Direct current magnetic data are consistent with the expected metal-centered triangular topology for the iron(III) ions, with an antiferromagnetic coupling constant J = 16.20(6) cm(-1) between the central iron and the peripheral ones and consequent stabilization of an S = 5 spin ground state. Alternating current (ac) susceptibility measurements in 0 and 1 kOe static applied fields show the presence of a thermally activated process for magnetic relaxation, with τ0 = 2.3(1) 10(-7) s and U(eff)/kB = 9.9(1) K at zero static field and τ0 = 2.0(2) 10(-7) s and U(eff)/kB = 13.0(2) K at 1 kOe. At a pressure of 10(-7) mbar, compound 2 sublimates at (440 ± 5) K vs (500 ± 10) K for the nonfluorinated variant [Fe4(L)2(dpm)6] (Hdpm = dipivaloylmethane). According to XPS, ToF-SIMS, and ac susceptibility studies, the chemical composition, fragmentation pattern, and slow magnetic relaxation of the pristine material are retained in sublimated samples, suggesting that the molecular structure remains totally unaffected upon vapor-phase processing.

20.
ACS Nano ; 17(15): 15189-15198, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37493644

RESUMO

The Chirality Induced Spin Selectivity (CISS) effect describes the capability of chiral molecules to act as spin filters discriminating flowing electrons according to their spin state. Within molecular spintronics, efforts are focused on developing chiral-molecule-based technologies to control the injection and coherence of spin-polarized currents. Herein, for this purpose, we study spin selectivity properties of a monolayer of a thioalkyl derivative of a thia-bridged triarylamine hetero[4]helicene chemisorbed on a gold surface. A stacked device assembled by embedding a monolayer of these molecules between ferromagnetic and diamagnetic electrodes exhibits asymmetric magnetoresistance with inversion of the signal according to the handedness of molecules, in line with the presence of the CISS effect. In addition, magnetically conductive atomic force microscopy reveals efficient electron spin filtering even at unusually low potentials. Our results demonstrate that thia[4]heterohelicenes represent key candidates for the development of chiral spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA