Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
RNA ; 30(3): 298-307, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164606

RESUMO

Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.


Assuntos
Compostos de Boro , Peptídeos , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/química , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Eletroforese em Gel de Poliacrilamida , Biossíntese de Proteínas
2.
Nucleic Acids Res ; 50(11): 6521-6531, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35648444

RESUMO

Transcriptional regulators select their targets from a large pool of similar genomic sites. The binding of the Drosophila dosage compensation complex (DCC) exclusively to the male X chromosome provides insight into binding site selectivity rules. Previous studies showed that the male-specific organizer of the complex, MSL2, and ubiquitous DNA-binding protein CLAMP directly interact and play an important role in the specificity of X chromosome binding. Here, we studied the highly specific interaction between the intrinsically disordered region of MSL2 and the N-terminal zinc-finger C2H2-type (C2H2) domain of CLAMP. We obtained the NMR structure of the CLAMP N-terminal C2H2 zinc finger, which has a classic C2H2 zinc-finger fold with a rather unusual distribution of residues typically used in DNA recognition. Substitutions of residues in this C2H2 domain had the same effect on the viability of males and females, suggesting that it plays a general role in CLAMP activity. The N-terminal C2H2 domain of CLAMP is highly conserved in insects. However, the MSL2 region involved in the interaction is conserved only within the Drosophila genus, suggesting that this interaction emerged during the evolution of a mechanism for the specific recruitment of the DCC on the male X chromosome in Drosophilidae.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Mecanismo Genético de Compensação de Dose , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteínas Nucleares/metabolismo , Ligação Proteica , Zinco/metabolismo
3.
Nat Chem Biol ; 16(10): 1071-1077, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32601485

RESUMO

The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.


Assuntos
Amycolatopsis/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Escherichia coli , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Naftacenos/química , Naftacenos/farmacologia , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica , Ribossomos/metabolismo
4.
Biochemistry (Mosc) ; 87(9): 871-889, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180983

RESUMO

Design and synthesis of conjugates consisting of the macrolide antibiotic desmycosin and fragments of the antibacterial peptide oncocin were performed in attempt to develop new antimicrobial compounds. New compounds were shown to bind to the E. coli 70S ribosomes, to inhibit bacterial protein synthesis in vitro, as well as to suppress bacterial growth. The conjugates of N-terminal hexa- and tripeptide fragments of oncocin and 3,2',4''-triacetyldesmycosin were found to be active against some strains of macrolide-resistant bacteria. By simulating molecular dynamics of the complexes of these compounds with the wild-type bacterial ribosomes and with ribosomes, containing A2059G 23S RNA mutation, the specific structural features of their interactions were revealed.


Assuntos
Peptídeos Antimicrobianos , Escherichia coli , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Macrolídeos/análise , Macrolídeos/metabolismo , Inibidores da Síntese de Proteínas/química , RNA/metabolismo , Ribossomos/química , Tilosina/análogos & derivados
5.
J Org Chem ; 85(14): 8865-8871, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32526142

RESUMO

All possible variants of ß-proline functionalized tripeptides consisting of homo/hetero chiral monomeric all-cis 5-arylpyrrolidine-2,4-dicarboxylate units were synthesized for the first time by a nonpeptidic coupling method based on 1,3-dipolar cycloaddition chemistry of azomethine ylides. Secondary structures of ß-proline tripeptides in solution were determined using the NMR spectroscopy data. o-(Trifluoromethyl)phenyl substituent contributes to stereoselectivity of 1,3-dipolar cycloaddition and structural features of ß-proline tripeptides. A ß-proline CF3-tripeptide with alternating absolute chirality between adjacent pyrrolidine units mimics natural PPII helix secondary structure.

6.
Nucleic Acids Res ; 46(3): 1525-1540, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29294091

RESUMO

The elongation of single-stranded DNA repeats at the 3'-ends of chromosomes by telomerase is a key process in maintaining genome integrity in eukaryotes. Abnormal activation of telomerase leads to uncontrolled cell division, whereas its down-regulation is attributed to ageing and several pathologies related to early cell death. Telomerase function is based on the dynamic interactions of its catalytic subunit (TERT) with nucleic acids-telomerase RNA, telomeric DNA and the DNA/RNA heteroduplex. Here, we present the crystallographic and NMR structures of the N-terminal (TEN) domain of TERT from the thermotolerant yeast Hansenula polymorpha and demonstrate the structural conservation of the core motif in evolutionarily divergent organisms. We identify the TEN residues that are involved in interactions with the telomerase RNA and in the recognition of the 'fork' at the distal end of the DNA product/RNA template heteroduplex. We propose that the TEN domain assists telomerase biological function and is involved in restricting the size of the heteroduplex during telomere repeat synthesis.


Assuntos
DNA Fúngico/química , Proteínas Fúngicas/química , Ácidos Nucleicos Heteroduplexes/química , Pichia/enzimologia , RNA Fúngico/química , Telomerase/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Fúngico/genética , DNA Fúngico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Pichia/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Telomerase/genética , Telomerase/metabolismo
7.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233554

RESUMO

DNA mismatch repair (MMR) plays a crucial role in the maintenance of genomic stability. The main MMR protein, MutS, was recently shown to recognize the G-quadruplex (G4) DNA structures, which, along with regulatory functions, have a negative impact on genome integrity. Here, we studied the effect of G4 on the DNA-binding activity of MutS from Rhodobacter sphaeroides (methyl-independent MMR) in comparison with MutS from Escherichia coli (methyl-directed MMR) and evaluated the influence of a G4 on the functioning of other proteins involved in the initial steps of MMR. For this purpose, a new DNA construct was designed containing a biologically relevant intramolecular stable G4 structure flanked by double-stranded regions with the set of DNA sites required for MMR initiation. The secondary structure of this model was examined using NMR spectroscopy, chemical probing, fluorescent indicators, circular dichroism, and UV spectroscopy. The results unambiguously showed that the d(GGGT)4 motif, when embedded in a double-stranded context, adopts a G4 structure of a parallel topology. Despite strong binding affinities of MutS and MutL for a G4, the latter is not recognized by E. coli MMR as a signal for repair, but does not prevent MMR processing when a G4 and G/T mismatch are in close proximity.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Bacteriano/genética , Escherichia coli/genética , Quadruplex G , Genoma Bacteriano , Rhodobacter sphaeroides/genética , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , Rhodobacter sphaeroides/metabolismo
8.
Molecules ; 25(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302417

RESUMO

A strategy for stereoselective synthesis of molecular platform for targeted delivery of bimodal therapeutic or theranostic agents to the prostate-specific membrane antigen (PSMA) receptor was developed. The proposed platform contains a urea-based, PSMA-targeting Glu-Urea-Lys (EuK) fragment as a vector moiety and tripeptide linker with terminal amide and azide groups for subsequent addition of two different therapeutic and diagnostic agents. The optimal method for this molecular platform synthesis includes (a) solid-phase assembly of the polypeptide linker, (b) coupling of this linker with the vector fragment, (c) attachment of 3-aminopropylazide, and (d) amide and carboxylic groups deprotection. A bimodal theranostic conjugate of the proposed platform with a cytostatic drug (docetaxel) and a fluorescent label (Sulfo-Cy5) was synthesized to demonstrate its possible sequential conjugation with different functional molecules.


Assuntos
Antígenos de Superfície/administração & dosagem , Carbocianinas/química , Docetaxel/química , Portadores de Fármacos/química , Glutamato Carboxipeptidase II/administração & dosagem , Peptídeos/química , Sequência de Aminoácidos , Técnicas de Química Sintética , Sistemas de Liberação de Medicamentos , Estrutura Molecular , Peptídeos/síntese química
9.
PLoS Genet ; 11(11): e1005672, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26618355

RESUMO

The level of susceptibility to tuberculosis (TB) infection depends upon allelic variations in numerous interacting genes. In our mouse model system, the whole-genome quantitative trait loci (QTLs) scan revealed three QTLs involved in TB control on chromosomes 3, 9, and in the vicinity of the H2 complex on chromosome 17. For the present study, we have established a panel of new congenic, MHC-recombinant mouse strains bearing differential small segments of chromosome 17 transferred from the TB-susceptible I/St (H2j) strain onto the genetic background of TB-resistant C57BL/6 (B6) mice (H2b). This allowed narrowing the QTL interval to 17Ch: 33, 77-34, 34 Mb, containing 36 protein-encoding genes. Cloning and sequencing of the H2j allelic variants of these genes demonstrated profound polymorphic variations compare to the H2b haplotype. In two recombinant strains, B6.I-249.1.15.100 and B6.I-249.1.15.139, recombination breakpoints occurred in different sites of the H2-Aß 1 gene (beta-chain of the Class II heterodimer H2-A), providing polymorphic variations in the domain ß1 of the Aß-chain. These variations were sufficient to produce different TB-relevant phenotypes: the more susceptible B6.I-249.1.15.100 strain demonstrated shorter survival time, more rapid body weight loss, higher mycobacterial loads in the lungs and more severe lung histopathology compared to the more resistant B6.I-249.1.15.139 strain. CD4+ T cells recognized mycobacterial antigens exclusively in the context of the H2-A Class II molecule, and the level of IFN-γ-producing CD4+ T cells in the lungs was significantly higher in the resistant strain. Thus, we directly demonstrated for the first time that the classical H2- Ab1 Class II gene is involved in TB control. Molecular modeling of the H2-Aj product predicts that amino acid (AA) substitutions in the Aß-chain modify the motif of the peptide-MHC binding groove. Moreover, unique AA substitutions in both α- and ß-chains of the H2-Aj molecule might affect its interactions with the T-cell receptor (TCR).


Assuntos
Mycobacterium tuberculosis/patogenicidade , Locos de Características Quantitativas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Tuberculose/genética , Alelos , Animais , Células Apresentadoras de Antígenos/imunologia , Mapeamento Cromossômico , Modelos Animais de Doenças , Estudos de Associação Genética , Haplótipos , Humanos , Camundongos , Mycobacterium tuberculosis/imunologia , Recombinação Genética , Linfócitos T/imunologia , Linfócitos T/patologia , Tuberculose/microbiologia , Tuberculose/patologia
10.
Angew Chem Int Ed Engl ; 56(39): 11734-11739, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28570778

RESUMO

Zinc-induced oligomerization of amyloid-ß peptide (Aß) produces potentially pathogenic agents of Alzheimer's disease. Mutations and modifications in the metal binding domain 1-16 of Aß peptide crucially affect its zinc-induced oligomerization by changing intermolecular zinc mediated interface. The 3D structure of this interface appearing in a range of Aß species is a prospective drug target for disease modifying therapy. Using NMR spectroscopy, EXAFS spectroscopy, mass spectrometry, and isothermal titration calorimetry the interaction of zinc ions with Aß fragments 1-7 and 1-10 carrying familial Taiwanese mutation D7H was studied. Zinc ions induce formation of a stable homodimer formed by the two peptide chains fastened by two zinc ions and stacking interactions of imidazole rings. A binuclear zinc interaction fold in the dimer structure was discovered. It can be used for designing zinc-regulated proteins and zinc-mediated self-assembling peptides.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Mutação , Zinco/metabolismo , Precursor de Proteína beta-Amiloide/química , Sítios de Ligação , Calorimetria/métodos , Dimerização , Humanos , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Espectroscopia por Absorção de Raios X , Zinco/química
11.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38931390

RESUMO

A series of hybrid compounds with triazole and thiazolidine nuclei connected by a linker has been synthesized and extensively studied. Various synthetic methods for the target compounds have been tested. A microbiological assessment of the obtained compounds was carried out on strains of pathogenic fungi C. albicans, C. non-albicans, multidrug-resistant C. auris, Rhizopus arrhizus, Aspergillus spp. and some dermatophytes and other yeasts. The lowest obtained MIC values for target compounds lie between 0.003 µg/mL and 0.5 µg/mL and therefore the compounds are not inferior or several times better than commercial azole drugs. The length of the acylpiperazine linker has a limited effect on antifungal activity. Some bioisosteric analogues were tested in microbiological analysis, but turned out to be weaker than the leader in activity. The highest activity was demonstrated by a compound with para-chlorobenzylidene substituent in the thiazolidine fragment. Molecular modelling was used to predict binding modes of synthesized molecules and rationalize experimentally observed SAR. The leader compound is twice more effective in inhibiting the formation of germ tubes by Candida albicans yeast cells compared to voriconazole. An increased level of Pdr5, an azoles drug efflux pump was observed, but the increase is lower than that caused by azoles. The results can be useful for further development of more powerful and safe antifungal agents.

12.
Org Lett ; 25(41): 7573-7577, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37801732

RESUMO

5-Arylpyrrolidine-2-carboxylates with an ortho-halogen substituent at 5-aryl and an electron-withdrawing group at the C4 position of the pyrrolidine ring were transformed into 1H-benzo[b]azepine-2-carboxylates under Cu(I) promotion and microwave activation. Reaction promoter copper(I) thiophene-2-carboxylate has been generated in situ in the reaction's environment from Cu2O and thiophene-2-carboxylic acid. Functionalized 1H-benzo[b]azepine-2-carboxylates were obtained in racemic and optically active forms in 67-89% yields. Subsequent stereoselective 1,3-dipolar cycloaddition and an Ullmann-type annulation/rearrangement cascade (UARC) ensure a synthetic route to oligomeric optically active benzazepine species with a well-defined 3D-structure.

13.
Biochimie ; 206: 150-153, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346253

RESUMO

The aromatic polyketides tetracenomycins were recently found to be potent inhibitors of protein synthesis. Their binding site is located in a unique locus within the tunnel of the large ribosomal subunit. Here we report the isolation and structure elucidation of a novel natural tetracenomycin congener - O4-Me-tetracenomycin C (O4-Me-TcmC). This compound is isomeric to tetracenomycin X (TcmX), however, in contrast to TcmX, O4-Me-TcmC exhibited no antimicrobial activity and was unable to inhibit protein synthesis in vitro. Structural alignment of tetracenomycins to the binding locus from cryo-EM TcmX-70S ribosome data revealed the crucial role of the 4-hydroxyl group. These findings are important for further development of semi-synthetic tetracenomycins as potential antibacterials.


Assuntos
Antibacterianos , Biossíntese de Proteínas , Antibacterianos/farmacologia , Antibacterianos/química , Ribossomos , Sítios de Ligação
14.
Aging Dis ; 14(2): 309-318, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37008059

RESUMO

The pathogenesis of Alzheimer's disease (AD) is associated with the formation of cerebral amyloid plaques, the main components of which are the modified Aß molecules as well as the metal ions. Aß isomerized at Asp7 residue (isoD7-Aß) is the most abundant isoform in amyloid plaques. We hypothesized that the pathogenic effect of isoD7-Aß is due to the formation of zinc-dependent oligomers, and that this interaction can be disrupted by the rationally designed tetrapeptide (HAEE). Here, we utilized surface plasmon resonance, nuclear magnetic resonance, and molecular dynamics simulation to demonstrate Zn2+-dependent oligomerization of isoD7-Aß and the formation of a stable isoD7-Aß:Zn2+:HAEE complex incapable of forming oligomers. To demonstrate the physiological importance of zinc-dependent isoD7-Aß oligomerization and the ability of HAEE to interfere with this process at the organismal level, we employed transgenic nematodes overexpressing human Aß. We show that the presence of isoD7-Aß in the medium triggers extensive amyloidosis that occurs in a Zn2+-dependent manner, enhances paralysis, and shortens the animals' lifespan. Exogenous HAEE completely reverses these pathological effects of isoD7-Aß. We conclude that the synergistic action of isoD7-Aß and Zn2+ promotes Aß aggregation and that the selected small molecules capable of interrupting this process, such as HAEE, can potentially serve as anti-amyloid therapeutics.

15.
Biochimie ; 204: 136-139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174793

RESUMO

Mitoregulin (Mtln) is a recently identified 56 amino acid long mitochondrial peptide conserved in vertebrates. Mtln is known to enhance function of respiratory complex I, which is likely mediated by modulation of lipid composition. To address an influence of Mtln gene on the metabolism we created knockout mice deficient in Mtln gene. In line with accumulation of triglycerides observed earlier on a model of Mtln knockout cell lines, we observed Mtln KO mice to develop obesity on a high fat diet. An increased weight gain could be attributed to enhanced fat accumulation according to the magnetic resonance live imaging. In addition, Mtln KO mice demonstrate elevated serum triglycerides and other oxidation substrates accompanied by an exhaustion of tricarboxylic acids cycle intermediates, suggesting suboptimal oxidation of respiration substrates by mitochondria lacking Mtln.


Assuntos
Mitocôndrias , Aumento de Peso , Camundongos , Animais , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Triglicerídeos/metabolismo , Camundongos Knockout , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Metabolismo dos Lipídeos
16.
Biophys J ; 102(1): 136-43, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22225807

RESUMO

In an attempt to reveal the mechanism of rats' resistance to Alzheimer's disease, we determined the structure of the metal-binding domain 1-16 of rat ß-amyloid (rat Aß(1-16)) in solution in the absence and presence of zinc ions. A zinc-induced dimerization of the domain was detected. The zinc coordination site was found to involve residues His-6 and His-14 of both peptide chains. We used experimental restraints obtained from analyses of NMR and isothermal titration calorimetry data to perform structure calculations. The calculations employed an explicit water environment and a simulated annealing molecular-dynamics protocol followed by quantum-mechanical/molecular-mechanical optimization. We found that the C-tails of the two polypeptide chains of the rat Aß(1-16) dimer are oriented in opposite directions to each other, which hinders the assembly of rat Aß dimers into oligomeric aggregates. Thus, the differences in the structure of zinc-binding sites of human and rat Aß(1-16), their ability to form regular cross-monomer bonds, and the orientation of their hydrophobic C-tails could be responsible for the resistance of rats to Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Fragmentos de Peptídeos/química , Zinco/química , Doença de Alzheimer/metabolismo , Animais , Sítios de Ligação , Simulação por Computador , Humanos , Ligação Proteica , Ratos , Especificidade da Espécie
17.
Elife ; 112022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129114

RESUMO

Rif1 is a large multifaceted protein involved in various processes of DNA metabolism - from telomere length regulation and replication to double-strand break repair. The mechanistic details of its action, however, are often poorly understood. Here, we report functional characterization of the Rif1 homologue from methylotrophic thermotolerant budding yeast Hansenula polymorpha DL-1. We show that, similar to other yeast species, H. polymorpha Rif1 suppresses telomerase-dependent telomere elongation. We uncover two novel modes of Rif1 recruitment at H. polymorpha telomeres: via direct DNA binding and through the association with the Ku heterodimer. Both of these modes (at least partially) require the intrinsically disordered N-terminal extension - a region of the protein present exclusively in yeast species. We also demonstrate that Rif1 binds Stn1 and promotes its accumulation at telomeres in H. polymorpha.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/ultraestrutura , Proteínas de Ciclo Celular/genética , Replicação do DNA , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Homeostase do Telômero , Proteínas de Ligação a Telômeros/genética
18.
Pharmaceuticals (Basel) ; 15(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35631390

RESUMO

Novel derivatives of Mycosidine (3,5-substituted thiazolidine-2,4-diones) are synthesized by Knoevenagel condensation and reactions of thiazolidines with chloroformates or halo-acetic acid esters. Furthermore, 5-Arylidene-2,4-thiazolidinediones and their 2-thioxo analogs containing halogen and hydroxy groups or di(benzyloxy) substituents in 5-benzylidene moiety are tested for antifungal activity in vitro. Some of the synthesized compounds exhibit high antifungal activity, both fungistatic and fungicidal, and lead to morphological changes in the Candida yeast cell wall. Based on the use of limited proteomic screening and toxicity analysis in mutants, we show that Mycosidine activity is associated with glucose transport. This suggests that this first-in-class antifungal drug has a novel mechanism of action that deserves further study.

19.
Front Mol Biosci ; 9: 865743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782865

RESUMO

Williams-Beuren syndrome (WBS) is a genetic disorder associated with the hemizygous deletion of several genes in chromosome 7, encoding 26 proteins. Malfunction of these proteins induce multisystemic failure in an organism. While biological functions of most proteins are more or less established, the one of methyltransferase WBSCR27 remains elusive. To find the substrate of methylation catalyzed by WBSCR27 we constructed mouse cell lines with a Wbscr27 gene knockout and studied the obtained cells using several molecular biology and mass spectrometry techniques. We attempted to pinpoint the methylation target among the RNAs and proteins, but in all cases neither a direct substrate has been identified nor the protein partners have been detected. To reveal the nature of the putative methylation substrate we determined the solution structure and studied the conformational dynamic properties of WBSCR27 in apo state and in complex with S-adenosyl-L-homocysteine (SAH). The protein core was found to form a canonical Rossman fold common for Class I methyltransferases. N-terminus of the protein and the ß6-ß7 loop were disordered in apo-form, but binding of SAH induced the transition of these fragments to a well-formed substrate binding site. Analyzing the structure of this binding site allows us to suggest potential substrates of WBSCR27 methylation to be probed in further research.

20.
Biochimie ; 192: 63-71, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34592388

RESUMO

The aromatic polyketide tetracenomycin X (TcmX) was recently found to be a potent inhibitor of protein synthesis; its binding site is located in a unique locus within the tunnel of the large ribosomal subunit. The distinct mode of action makes this relatively narrow class of aromatic polyketides promising for drug development in the quest to prevent the spread of drug-resistant pathogens. Here we report the isolation and structure elucidation of a novel natural tetracenomycin X congener - 6-hydroxytetraceonomycin X (6-OH-TcmX). In contrast to TcmX, 6-OH-TcmX exhibited lower antimicrobial and cytotoxic activity, but comparable in vitro protein synthesis inhibition ability. A survey on spectral properties of tetracenomycins revealed profound differences in both UV-absorption and fluorescence spectra between TcmX and 6-OH-TcmX, suggesting a significant influence of 6-hydroxylation on the tetracenomycin X chromophore. Nonetheless, characteristic spectral properties of tetracenomycins make them suitable candidates for semi-synthetic drug development (e.g., for targeted delivery, chemical biology, or cell imaging).


Assuntos
Amycolatopsis/química , Antibacterianos/química , Células A549 , Amycolatopsis/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Células HEK293 , Humanos , Células MCF-7 , Estrutura Molecular , Naftacenos/química , Naftacenos/metabolismo , Naftacenos/farmacologia , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA