Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vet Res ; 51(1): 123, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977847

RESUMO

Infectious coryza (IC), an upper respiratory tract disease affecting chickens, is caused by Avibacterium paragallinarum. The clinical manifestations of IC include nasal discharge, facial swelling, and lacrimation. This acute disease results in high morbidity and low mortality, while the course of the disease is prolonged and mortality rates are increased in cases with secondary infections. Studies regarding the immune response in infected chickens are scarce, and the local immune response is the focal point of investigation. However, a large body of work has demonstrated that severe infections can impact the systemic immune response. The objective of this study was to evaluate the systemic effects of Avibacterium paragallinarum (serovar B-1) infection on immune cells in specific pathogen-free (SPF) chickens. The current study revealed the presence of a transient circulating monocyte population endowed with high phagocytic ability and clear downregulation of major histocompatibility complex class II (MHC-II) surface expression. In human and mouse studies, this monocyte population (identified as tolerant monocytes) has been correlated with a dysfunctional immune response, increasing the risk of secondary infections and mortality. Consistent with this dysfunctional immune response, we demonstrate that B cells from infected chickens produced fewer antibodies than those from control chickens. Moreover, T cells isolated from the peripheral blood of infected chickens had a lower ability to proliferate in response to concanavalin A than those isolated from control chickens. These findings could be related to the severe clinical signs observed in complicated IC caused by the presence of secondary infections.


Assuntos
Galinhas , Infecções por Haemophilus/veterinária , Haemophilus paragallinarum/fisiologia , Monócitos/imunologia , Doenças das Aves Domésticas/imunologia , Animais , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/microbiologia , Antígenos de Histocompatibilidade Classe II/imunologia , Doenças das Aves Domésticas/microbiologia , Organismos Livres de Patógenos Específicos
2.
BMC Vet Res ; 16(1): 230, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631319

RESUMO

BACKGROUND: In the poultry industry, quantitative analysis of chicken T cell proliferation is important in many biological applications such as drug screening, vaccine production, and cytotoxicity assessment. Several assays have been established to evaluate this immunological response in chicken cells. However, these assays have some disadvantages including use of radioactive labels ([3H]-Thymidine assay), necessity of DNA denaturation or digestion (BrdU incorporation assay), lack of sensitivity and underestimation of anti-proliferative effects (MTT assay), and modulation of activation molecules and cell viability reduction (CFSE assay). Overcoming these limitations, the EdU proliferation assay is sensitive and advantageous compared to [3H]-Thymidine radioactive labels in studies on cell proliferation in vitro and allows simultaneous identification of T cell populations. However, this assay has not been established using primary chicken cells to evaluate T cell proliferation by flow cytometry. RESULTS: Here, we established an assay to evaluate the proliferation of primary chicken splenocytes based on the incorporation of a thymidine analog (EdU) and a click reaction with a fluorescent azide, detected by a flow cytometer. We also established a protocol that combines EdU incorporation and immunostaining to detect CD4+ and CD8+ proliferating T cells. By inducing cell proliferation with increasing concentrations of a mitogen (Concanavalin A), we observed a linear increase in EdU positive cells, indicating that our protocol does not present any deficiency in the quantity and quality of reagents that were used to perform the click reaction. CONCLUSIONS: In summary, we established a reliable protocol to evaluate the proliferation of CD4+ and CD8+ chicken T cells by flow cytometry. Moreover, as this is an in-house protocol, the cost per sample using this protocol is low, allowing its implementation in laboratories that process a large number of samples.


Assuntos
Galinhas , Citometria de Fluxo/veterinária , Linfócitos T/citologia , Animais , Proliferação de Células , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Timidina/análogos & derivados , Timidina/química
3.
Front Immunol ; 13: 881604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664008

RESUMO

Within the framework of the current COVID-19 pandemic, there is a race against time to find therapies for the outbreak to be controlled. Since vaccines are still tedious to develop and partially available for low-income countries, passive immunity based on egg-yolk antibodies (IgY) is presented as a suitable approach to preclude potential death of infected patients, based on its high specificity/avidity/production yield, cost-effective manufacture, and ease of administration. In the present study, IgY antibodies against a recombinant RBD protein of SARS-CoV-2 were produced in specific-pathogen-free chickens and purified from eggs using a biocompatible method. In vitro immunoreactivity was tested, finding high recognition and neutralization values. Safety was also demonstrated prior to efficacy evaluation, in which body weight, kinematics, and histopathological assessments of hamsters challenged with SARS-CoV-2 were performed, showing a protective effect administering IgY intranasally both as a prophylactic treatment or a post-infection treatment. The results of this study showed that intranasally delivered IgY has the potential to both aid in prevention and in overcoming COVID-19 infection, which should be very useful to control the advance of the current pandemic and the associated mortality.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos , COVID-19/prevenção & controle , Galinhas , Humanos , Imunoglobulinas , Pandemias
4.
PLoS One ; 17(8): e0269823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35998134

RESUMO

COVID-19 pandemic has accelerated the development of vaccines against its etiologic agent, SARS-CoV-2. However, the emergence of new variants of the virus lead to the generation of new alternatives to improve the current sub-unit vaccines in development. In the present report, the immunogenicity of the Spike RBD of SARS-CoV-2 formulated with an oil-in-water emulsion and a water-in-oil emulsion with squalene was evaluated in mice and hamsters. The RBD protein was expressed in insect cells and purified by chromatography until >95% purity. The protein was shown to have the appropriate folding as determined by ELISA and flow cytometry binding assays to its receptor, as well as by its detection by hamster immune anti-S1 sera under non-reducing conditions. In immunization assays, although the cellular immune response elicited by both adjuvants were similar, the formulation based in water-in-oil emulsion and squalene generated an earlier humoral response as determined by ELISA. Similarly, this formulation was able to stimulate neutralizing antibodies in hamsters. The vaccine candidate was shown to be safe, as demonstrated by the histopathological analysis in lungs, liver and kidney. These results have shown the potential of this formulation vaccine to be evaluated in a challenge against SARS-CoV-2 and determine its ability to confer protection.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Emulsões , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Pandemias/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Esqualeno , Água
5.
Sci Rep ; 12(1): 10359, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725862

RESUMO

The coronavirus disease-19 (COVID-19) pandemic has already claimed millions of lives and remains one of the major catastrophes in the recorded history. While mitigation and control strategies provide short term solutions, vaccines play critical roles in long term control of the disease. Recent emergence of potentially vaccine-resistant and novel variants necessitated testing and deployment of novel technologies that are safe, effective, stable, easy to administer, and inexpensive to produce. Here we developed three recombinant Newcastle disease virus (rNDV) vectored vaccines and assessed their immunogenicity, safety, and protective efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice and hamsters. Intranasal administration of rNDV-based vaccine candidates elicited high levels of neutralizing antibodies. Importantly, the nasally administrated vaccine prevented lung damage, and significantly reduced viral load in the respiratory tract of vaccinated animal which was compounded by profound humoral immune responses. Taken together, the presented NDV-based vaccine candidates fully protected animals against SARS-CoV-2 challenge and warrants evaluation in a Phase I human clinical trial as a promising tool in the fight against COVID-19.


Assuntos
COVID-19 , Vacinas Virais , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Camundongos , Vírus da Doença de Newcastle/genética , SARS-CoV-2/genética , Vacinação , Vacinas Sintéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA