Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(8): 1676-1679, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486323

RESUMO

Scrub typhus, a rickettsial disease caused by Orientia spp., is transmitted by infected larval trombiculid mites (chiggers). We report the molecular detection of Orientia species in free-living Eutrombicula chiggers collected in an area in North Carolina, USA, to which spotted fever group rickettsiae infections are endemic.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Trombiculidae , Animais , Estados Unidos/epidemiologia , Orientia tsutsugamushi/genética , Trombiculidae/microbiologia , Orientia , Tifo por Ácaros/diagnóstico , Tifo por Ácaros/epidemiologia , Tifo por Ácaros/microbiologia , Bactérias , Roedores
2.
Microb Ecol ; 84(1): 240-256, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34370055

RESUMO

The long-standing association between insects and microorganisms has been especially crucial to the evolutionary and ecological success of social insect groups. Notably, research on the interaction of the two social forms (monogyne and polygyne) of the red imported fire ant (RIFA), Solenopsis invicta Buren, with microbes in its soil habitat is presently limited. In this study, we characterized bacterial microbiomes associated with RIFA nest soils and native (RIFA-negative) soils to better understand the effects of colonization of RIFA on soil microbial communities. Bacterial community fingerprints of 16S rRNA amplicons using denaturing gradient gel electrophoresis revealed significant differences in the structure of the bacterial communities between RIFA-positive and RIFA-negative soils at 0 and 10 cm depths. Illumina sequencing of 16S rRNA amplicons provided fine-scale analysis to test for effects of RIFA colonization, RIFA social form, and soil depth on the composition of the bacterial microbiomes of the soil and RIFA workers. Our results showed the bacterial community structure of RIFA-colonized soils to be significantly different from native soil communities and to evidence elevated abundances of several taxa, including Actinobacteria. Colony social form was not found to be a significant factor in nest or RIFA worker microbiome compositions. RIFA workers and nest soils were determined to have markedly different bacterial communities, with RIFA worker microbiomes being characterized by high abundances of a Bartonella-like endosymbiont and Entomoplasmataceae. Cloning and sequencing of the 16S rRNA gene revealed the Bartonella sp. to be a novel bacterium.


Assuntos
Formigas , Animais , Formigas/microbiologia , Bactérias/genética , Ecossistema , RNA Ribossômico 16S/genética , Solo
3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499184

RESUMO

The use of insect-resistant transgenic crops producing Bacillus thuringiensis protein Cry toxins (Bt) to control caterpillars is wide-spread. Development of a mechanism to prevent Bt from reaching its target site in the digestive system could result in Bt resistance and resistance to other insecticides active per os. Increased feeding rates by increasing temperature in tobacco budworms, Chloridea virescens, and bollworms, Helicoverpa zea, decreased Bt Cry1Ac susceptibility and mortality. The same was found in C. virescens for Bollgard II plant extract containing Bt Cry1Ac and Cry2Ab2 toxins. Furthermore, H. zea from the same inbred laboratory colony that fed faster independent of temperature manipulation were less susceptible to Bt intoxication. A laboratory derived C. virescens Bt resistant strain demonstrated a higher feeding rate on non-Bt artificial diet than the parental, Bt susceptible strain. A laboratory-reared Bt resistant fall armyworm, Spodoptera frugiperda, strain also fed faster on non-Bt diet compared to Bt susceptible caterpillars of the same species, both originally collected from corn. The studies in toto and the literature reviewed support the hypothesis that increased feeding rate is a behavioral mechanism for reducing caterpillar susceptibility to Bt. Its possible role in resistance needs further study.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas de Bacillus thuringiensis , Mariposas/genética , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Resistência a Inseticidas/genética , Gossypium/metabolismo , Larva/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33956595

RESUMO

A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming, aerobic bacterium, designated type strain SSI9T, was isolated from sand fly (Phlebotomus papatasi Scopoli; Diptera: Psychodidae) rearing substrate and subjected to polyphasic taxonomic analysis. Strain SSI9T contained phosphatidylethanolamine as a major polar lipid, MK-7 as the predominant quinone, and C16 : 1ω6c/C16 : 1ω7c, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0 as the major cellular fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that SSI9T represents a member of the genus Sphingobacterium, of the family Sphingobacteriaceae sharing 96.5-88.0 % sequence similarity with other species of the genus Sphingobacterium. The results of multilocus sequence analysis using the concatenated sequences of the housekeeping genes recA, rplC and groL indicated that SSI9T formed a separate branch in the genus Sphingobacterium. The genome of SSI9T is 5 197 142 bp with a DNA G+C content of 41.8 mol% and encodes 4395 predicted coding sequences, 49 tRNAs, and three complete rRNAs and two partial rRNAs. SSI9T could be distinguished from other species of the genus Sphingobacterium with validly published names by several phenotypic, chemotaxonomic and genomic characteristics. On the basis of the results of this polyphasic taxonomic analysis, the bacterial isolate represents a novel species within the genus Sphingobacterium, for which the name Sphingobacterium phlebotomi sp. nov. is proposed. The type strain is SSI9T (=ATCC TSD-210T=LMG 31664T=NRRL B-65603T).


Assuntos
Phlebotomus/microbiologia , Sphingobacterium/classificação , Sphingobacterium/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Fosfatidiletanolaminas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/genética , Sphingobacterium/metabolismo
5.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906662

RESUMO

Several different agricultural insect pests have developed field resistance to Bt (Bacillus thuringiensis) proteins (ex. Cry1Ac, Cry1F, etc.) expressed in crops, including corn and cotton. In the bollworm, Helicoverpa zea, resistance levels are increasing; recent reports in 2019 show up to 1000-fold levels of resistance to Cry1Ac, a major insecticidal protein in Bt-crops. A common method to analyze global differences in gene expression is RNA-seq. This technique was used to measure differences in global gene expression between a Bt-susceptible and Bt-resistant strain of the bollworm, where the differences in susceptibility to Cry1Ac insecticidal proteins were 100-fold. We found expected gene expression differences based on our current understanding of the Bt mode of action, including increased expression of proteases (trypsins and serine proteases) and reduced expression of Bt-interacting receptors (aminopeptidases and cadherins) in resistant bollworms. We also found additional expression differences for transcripts that were not previously investigated, i.e., transcripts from three immune pathways-Jak/STAT, Toll, and IMD. Immune pathway receptors (ex. PGRPs) and the IMD pathway demonstrated the highest differences in expression. Our analysis suggested that multiple mechanisms are involved in the development of Bt-resistance, including potentially unrecognized pathways.


Assuntos
Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Mariposas/genética , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/farmacologia , Proteínas de Bactérias/metabolismo , Caderinas/metabolismo , Produtos Agrícolas/genética , Endotoxinas/farmacologia , Expressão Gênica/efeitos dos fármacos , Proteínas Hemolisinas/farmacologia , Sistema Imunitário/metabolismo , Inseticidas/farmacologia , Larva/genética , Larva/metabolismo , Peptídeo Hidrolases/metabolismo , Controle Biológico de Vetores
6.
J Clin Microbiol ; 54(4): 972-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26818674

RESUMO

A novel nested PCR assay was developed to detectRickettsiaspp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) ofRickettsiaspp. The newly designed primers were evaluated using genomic DNA from 11Rickettsiaspecies belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to otherRickettsia-specific PCR targets (ompA,gltA, and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11Rickettsiaspp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from "CandidatusRickettsia amblyommii." Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adultDermacentor variabilisticks. The nested 23S-5S IGS assay detectedRickettsiaDNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species ofRickettsia The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species ofRickettsiain the ticks. "CandidatusRickettsia amblyommii,"R. montanensis,R. felis, andR. belliiwere frequently identified species, along with some potentially novelRickettsiastrains that were closely related toR. belliiandR. conorii.


Assuntos
Dermacentor/microbiologia , Reação em Cadeia da Polimerase/métodos , Infecções por Rickettsiaceae/diagnóstico , Infecções por Rickettsiaceae/microbiologia , Rickettsieae/isolamento & purificação , Animais , Animais de Laboratório , Primers do DNA/genética , DNA Intergênico/química , DNA Intergênico/genética , Humanos , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/genética , RNA Ribossômico 23S/genética , RNA Ribossômico 5S , Rickettsieae/classificação , Rickettsieae/genética , Sensibilidade e Especificidade
7.
Int J Mol Sci ; 17(9)2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27649166

RESUMO

Soybean is an important food crop, and insect integrated pest management (IPM) is critical to the sustainability of this production system. In recent years, the introduction into the United States of the kudzu bug currently identified as Megacopta cribraria (F.), poses a threat to soybean production. The kudzu bug was first discovered in the state of Georgia, U.S. in 2009 and since then has spread to most of the southeastern states. Because it was not found in the North American subcontinent before this time, much of our knowledge of this insect comes from research done in its native habitat. However, since the U.S. introduction, studies have been undertaken to improve our understanding of the kudzu bug basic biology, microbiome, migration patterns, host selection and management in its expanding new range. Researchers are not only looking at developing IPM strategies for the kudzu bug in soybean, but also at its unique relationship with symbiotic bacteria. Adult females deposit bacterial packets with their eggs, and the neonates feed on these packets to acquire the bacteria, Candidatus Ishikawaella capsulata. The kudzu bug should be an informative model to study the co-evolution of insect function and behavior with that of a single bacteria species. We review kudzu bug trapping and survey methods, the development of bioassays for insecticide susceptibility, insecticide efficacy, host preferences, impact of the pest on urban environments, population expansion, and the occurrence of natural enemies. The identity of the kudzu bug in the U.S. is not clear. We propose that the kudzu bug currently accepted as M. cribraria in the U.S. is actually Megacopta punctatissima, with more work needed to confirm this hypothesis.


Assuntos
Heterópteros/microbiologia , Microbiota , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Beauveria/fisiologia , Heterópteros/efeitos dos fármacos , Heterópteros/crescimento & desenvolvimento , Inseticidas/toxicidade , Densidade Demográfica , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/parasitologia , Simbiose , Estados Unidos
8.
Appl Environ Microbiol ; 81(18): 6200-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150449

RESUMO

Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex.


Assuntos
Bactérias/genética , Biota , Ixodes/microbiologia , Animais , Bactérias/classificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Geografia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores Sexuais , Estados Unidos
9.
J Med Entomol ; 52(4): 726-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26335482

RESUMO

Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats.


Assuntos
Aedes/fisiologia , Larva/fisiologia , Oviposição/fisiologia , Rios , Navios , Animais , Monitoramento Ambiental , Feminino , Peru
10.
Appl Environ Microbiol ; 80(1): 354-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24162580

RESUMO

Ticks are important vectors for many emerging pathogens. However, they are also infected with many symbionts and commensals, often competing for the same niches. In this paper, we characterize the microbiome of Amblyomma americanum (Acari: Ixodidae), the lone star tick, in order to better understand the evolutionary relationships between pathogens and nonpathogens. Multitag pyrosequencing of prokaryotic 16S rRNA genes (16S rRNA) was performed on 20 lone star ticks (including males, females, and nymphs). Pyrosequencing of the rickettsial sca0 gene (also known as ompA or rompA) was performed on six ticks. Female ticks had less diverse microbiomes than males and nymphs, with greater population densities of Rickettsiales. The most common members of Rickettsiales were "Candidatus Rickettsia amblyommii" and "Candidatus Midichloria mitochondrii." "Ca. Rickettsia amblyommii" was 2.6-fold more common in females than males, and there was no sequence diversity in the sca0 gene. These results are consistent with a predominantly vertical transmission pattern for "Ca. Rickettsia amblyommii."


Assuntos
Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Ixodidae/microbiologia , Microbiota , Alphaproteobacteria/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Insects ; 15(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38535349

RESUMO

Ticks are one of the most important vectors of human and animal disease worldwide. In addition to pathogens, ticks carry a diverse microbiota of symbiotic and commensal microorganisms. In this study, we used next-generation sequencing (NGS) to survey the microbiomes of Haemaphysalis longicornis (Acari: Ixodidae) at different life stages collected from field populations in North Carolina (NC), USA. Sequence analyses were performed using QIIME2 with the DADA2 plugin and taxonomic assignments using the Greengenes database. Following quality filtering and rarefaction, the bacterial DNA sequences were assigned to 4795 amplicon sequence variants (ASVs) in 105 ticks. A core microbiome of H. longicornis was conserved across all ticks analyzed, and included bacterial taxa: Coxiella, Sphingomonas, Staphylococcus, Acinetobacter, Pseudomonas, Sphingomonadaceae, Actinomycetales, and Sphingobium. Less abundant bacterial taxa, including Rickettsia and Aeromonas, were also identified in some ticks. We discovered some ASVs that are associated with human and animal infections among the identified bacteria. Alpha diversity metrics revealed significant differences in bacterial diversity between life stages. Beta diversity metrics also revealed that bacterial communities across the three life stages were significantly different, suggesting dramatic changes in the microbiome as ticks mature. Based on these results, additional investigation is necessary to determine the significance of the Haemaphysalis longicornis microbiome for animal and human health.

12.
Microorganisms ; 11(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838458

RESUMO

Rickettsia amblyommatis is a potentially pathogenic species of Rickettsia within the spotted fever group vectored by ticks. While many studies have been published on this species, there is debate over its pathogenicity and the inhibitory role it plays in diagnosing illnesses caused by other spotted fever group Rickettsia species. Many publications have recorded the high infection prevalence of R. amblyommatis in tick populations at a global scale. While this species is rather ubiquitous, questions remain over the epidemiological importance of this possible human pathogen. With tick-borne diseases on the rise, understanding the exact role that R. amblyommatis plays as a pathogen and inhibitor of infection relative to other tick-borne pathogens will help public health efforts. The goal of this review was to compile the known literature on R. amblyommatis, review what we know about its geographic distribution, tick vectors, and pathogenicity, assess relatedness between various international strains from ticks by phylogenetic analysis and draw conclusions regarding future research needed.

13.
Insects ; 13(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893027

RESUMO

Cases of Lyme disease in humans are on the rise in the United States and Canada. The vector of the bacteria that causes this disease is the blacklegged tick, Ixodes scapularis. Current control methods for I. scapularis mainly involve chemical acaricides. Unfortunately, ticks are developing resistance to these chemicals, and more and more, the public prefers non-toxic alternatives to chemical pesticides. We discovered that volcanic glass, ImergardTM WP, and other industrial minerals such as Celite 610 were efficacious mechanical insecticides against mosquitoes, filth flies, and agricultural pests. In this report, when 6-10- and 50-70-day old unfed I. scapularis nymphs were dipped for 1-2 s into Celite, the time to 50% mortality (LT50) was 66.8 and 81.7 min, respectively, at 30 °C and 50% relative humidity (RH). The LT50 was actually shorter at a higher 70% RH, 43.8 min. Scanning electron microscopy showed that the ticks were coated over most of their body surface, including partial to almost total coverage of the opening to their respiratory system. The other mechanical insecticide, Imergard, had similar efficacy against blacklegged unfed nymphs with an LT50 at 30 °C and 50% RH of 70.4 min. Although more research is needed, this study suggests that industrial minerals could be used as an alternative to chemical pesticides to control ticks and Lyme disease.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36429867

RESUMO

Chiggers are the larval stage of Trombiculidae and Leeuwenhoekiidae mites of medical and veterinary importance. Some species in the genus Leptotrombidium and Herpetacarus vector Orientia species, the bacteria that causes scrub typhus disease in humans. Scrub typhus is a life-threatening, febrile disease. Chigger bites can also cause dermatitis. There were 248 chigger species reported from the US from almost every state. However, there are large gaps in our knowledge of the life history of other stages of development. North American wide morphological keys are needed for better species identification, and molecular sequence data for identification are minimal and not clearly matched with morphological data. The role of chiggers in disease transmission in the US is especially understudied, and the role of endosymbionts in Orientia infection are suggested in the scientific literature but not confirmed. The most common chiggers in the eastern United States were identified as Eutrombicula alfreddugesi but were likely misidentified and should be replaced with Eutrombicula cinnabaris. Scrub typhus was originally believed to be limited to the Tsutsugamushi Triangle and the chigger genus, Leptotrombidium, but there is increasing evidence this is not the case. The potential of Orientia species establishing in the US is high. In addition, several other recognized pathogens to infect humans, namely Hantavirus, Bartonella, Borrelia, and Rickettsia, were also detected in chiggers. The role that chiggers play in these disease transmissions in the US needs further investigation. It is possible some of the tick-borne diseases and red meat allergies are caused by chiggers.


Assuntos
Ácaros e Carrapatos , Microbiota , Orientia tsutsugamushi , Tifo por Ácaros , Trombiculidae , Animais , Humanos , Trombiculidae/microbiologia , Tifo por Ácaros/epidemiologia , Biologia
15.
J Med Entomol ; 59(4): 1382-1393, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35489062

RESUMO

Host feeding patterns and the prevalence of infection with Rickettsia parkeri were determined for the primary vector, Amblyomma maculatum Koch as well as sympatric tick species A. americanum (Linnaeus) and Dermacentor variabilis (Say) collected from a reconstructed prairie in the Piedmont region of North Carolina during 2011 and 2012. The occurrence of R. parkeri among A. maculatum adults and nymphs was 36.9% (45/122) and 33.3% (2/6), respectively. Rickettsia parkeri was detected in a single male A. americanum 2.3% (1/43). A PCR-reverse line blot hybridization assay of a 12S rDNA fragment amplified from remnant larval and nymphal bloodmeals of host-seeking ticks was used to identify bloodmeal hosts. Of the tick samples tested, bloodmeal host identification was successful for 29.3% (12/41) of adult A. americanum and 39.2% (20/51) of adult D. variabilis. For A. maculatum, bloodmeal host identification was successful for 50% (61/122) of adults collected from vegetation and 100% (4/4) of nymphs removed from cotton rats (Sigmodon hispidus Say and Ord). The cotton rat was the most common bloodmeal host with 59.0% (36/61) identified for adult A. maculatum. No statistically significant association was observed, however, between bloodmeal host and pathogen prevalence for any tick species. While the cotton rat was an important bloodmeal host for A. maculatum nymphs, this vertebrate did not appear to be the primary source of R. parkeri infection for A. maculatum.


Assuntos
Amblyomma , Pradaria , Rickettsia , Sigmodontinae , Amblyomma/microbiologia , Animais , Larva , Masculino , North Carolina/epidemiologia , Ninfa , Prevalência , Rickettsia/genética , Rickettsia/isolamento & purificação , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/transmissão , Infecções por Rickettsia/veterinária , Sigmodontinae/sangue , Sigmodontinae/microbiologia , Sigmodontinae/parasitologia
16.
Insects ; 13(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621779

RESUMO

Populations of monogyne and polygyne red imported fire ants (RIFA), Solenopsis invicta Buren, are distributed throughout the southern United States. This ant species is hazardous to farm animals and workers, damages infrastructure, and depletes native arthropod populations. Colony expansion is affected by several biotic factors, but the effects of soil microbes on ant behavior related to soil excavation within nest sites have not been investigated. Consequently, we cultured bacteria from RIFA nest soils. The effects of individual bacterial isolates and bacterial cell densities on the choice of digging site as well as digging activity of monogyne and polygyne RIFA worker ants were evaluated in two-choice bioassays. Based on phylogenetic analysis, 17 isolates were selected and tested initially at 5 × 108 cells/mL and 20 workers per assay. Firmicutes (Bacillus, Paenibacillus, Brevibacillus) repelled the ants, but Arthrobacter woluwensis strongly attracted ants. Subsequently, the six isolates having the greatest positive or negative effects on ant behavior were evaluated at a lower bacterial cell and worker ant densities. Ant responses to these bacteria generally decreased as cell densities declined to 5 × 106 cells/mL. Observations of ant behavior during a three-hour, two-choice bioassay revealed that ants generally visited both control and bacteria-treated sand prior to making a digging site choice. Our research results indicate that soil bacteria may mediate ant nest expansion or relocation and foraging tunnel construction. Identification of bacterial metabolites that affect RIFA digging behavior merits additional research because these compounds may provide a basis for novel management strategies that repel RIFA away from sensitive infrastructure or attract fire ants to insecticidal baits.

17.
Microorganisms ; 10(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35889061

RESUMO

Chiggers are vectors of rickettsial pathogenic bacteria, Orientia spp., that cause the human disease, scrub typhus, in the Asian-Pacific area and northern Australia (known as the Tsutsugamushi Triangle). More recently, reports of scrub typhus in Africa, southern Chile, and the Middle East have reshaped our understanding of the epidemiology of this disease, indicating it has a broad geographical distribution. Despite the growing number of studies and discoveries of chigger-borne human disease outside of the Tsutsugamushi Triangle, rickettsial pathogens in chigger mites in the US are still undetermined. The aim of our study was to investigate possible Rickettsia DNA in chiggers collected from rodents in North Carolina, USA. Of 46 chiggers tested, 47.8% tested positive for amplicons of the 23S-5S gene, 36.9% tested positive for 17 kDa, and 15.2% tested positive for gltA. Nucleotide sequence analyses of the Rickettsia-specific 23S-5S intergenic spacer (IGS), 17 kDa, and gltA gene fragments indicated that the amplicons from these chiggers were closely related to those in R. felis, R. conorii, R. typhi, and unidentified Rickettsia species. In this study, we provide the first evidence of Rickettsia infection in chiggers collected from rodents within the continental USA. In North Carolina, a US state with the highest annual cases of spotted fever rickettsioses, these results suggest chigger bites could pose a risk to public health, warranting further study.

18.
PLoS One ; 17(12): e0278912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520830

RESUMO

Over the past 10 years, studies using high-throughput 16S rRNA gene sequencing have shown that mosquitoes harbor diverse bacterial communities in their digestive system. However, no previous research has examined the total bacteria community inside versus outside of mosquitoes and whether bacteria found on the outside could represent a potential health threat through mechanical transfer. We examined the bacterial community of the external surface and internal body of female Anopheles coluzzii adults collected from homes in Côte d'Ivoire, Africa, by Illumina sequencing of the V3 to V4 region of 16S rRNA gene. Anopheles coluzzii is in the Anopheles gambiae sensu lato (s.l.) species complex and important in the transmission of malaria. The total 16S rRNA reads were assigned to 34 phyla, 73 orders, 325 families, and 700 genera. At the genus level, the most abundant genera inside and outside combined were Bacillus, Staphylococcus, Enterobacter, Corynebacterium, Kocuria, Providencia, and Sphingomonas. Mosquitoes had a greater diversity of bacterial taxa internally compared to the outside. The internal bacterial communities were similar between homes, while the external body samples were significantly different between homes. The bacteria on the external body were associated with plants, human and animal skin, and human and animal infections. Internally, Rickettsia bellii and Rickettsia typhi were found, potentially of importance, since this genus is associated with human diseases. Based on these findings, further research is warranted to assess the potential mechanical transmission of bacteria by mosquitoes moving into homes and the importance of the internal mosquito microbiota in human health.


Assuntos
Anopheles , Malária , Microbiota , Animais , Humanos , Anopheles/genética , RNA Ribossômico 16S/genética , Côte d'Ivoire , Bactérias/genética , Microbiota/genética , Mosquitos Vetores
19.
Proc Natl Acad Sci U S A ; 105(27): 9262-7, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18607006

RESUMO

The yellow fever mosquito, Aedes aegypti, the global vector of dengue and yellow fever, is inexorably linked to water-filled human-made containers for egg laying and production of progeny. Oviposition is stimulated by cues from water containers, but the nature and origin of these cues have not been elucidated. We showed that mosquito females directed most of their eggs to bamboo and white-oak leaf infusions, and only a small fraction of the eggs were laid in plain water containers. In binary choice assays, we demonstrated that microorganisms in leaf infusions produced oviposition-stimulating kairomones, and using a combination of bacterial culturing approaches, bioassay-guided fractionation of bacterial extracts, and chemical analyses, we now demonstrate that specific bacteria-associated carboxylic acids and methyl esters serve as potent oviposition stimulants for gravid Ae. aegypti. Elucidation of these compounds will improve understanding of the chemical basis of egg laying behavior of Ae. aegypti, and the kairomones will likely enhance the efficacy of surveillance and control programs for this disease vector of substantial global public health importance.


Assuntos
Aedes/microbiologia , Aedes/fisiologia , Bactérias/isolamento & purificação , Comportamento Animal/fisiologia , Oviposição/fisiologia , Feromônios/análise , Aedes/anatomia & histologia , Animais , Bioensaio , Feminino , Folhas de Planta/parasitologia , Sasa/metabolismo
20.
J Med Entomol ; 58(2): 518-527, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33277897

RESUMO

Phlebotomine sand flies are worldwide vectors of Leishmania parasites as well as other bacterial and viral pathogens. Due to the variable impact of traditional vector control practices, a more ecologically based approach is needed. The goal of this study was to isolate bacteria from the most attractive substrate to gravid Phlebotomus papatasi Scopoli sand flies and determine the role of bacterial volatiles in the oviposition attractancy of P. papatasi using behavioral assays. We hypothesized that gravid sand flies are attracted to bacterially derived semiochemical cues associated with breeding sites. Bacteria were isolated from a larvae-conditioned rearing medium, previously shown to be highly attractive to sand flies. The isolated bacteria were identified by amplifying and sequencing 16S rDNA gene fragments, and 12 distinct bacterial species were selected for two-choice olfactometer bioassays. The mix of 12 bacterial isolates elicited strong attraction at the lower concentration of 107 cells per ml and significant repellence at a high concentration of 109 cells per ml. Three individual isolates (SSI-2, SSI-9, and SSI-11) were particularly attractive at low doses. In general, we observed dose-related effects, with some bacterial isolates stimulating negative and some positive dose-response curves in sand fly attraction. Our study confirms the important role of saprophytic bacteria, gut bacteria, or both, in guiding the oviposition-site selection behavior of sand flies. Identifying the specific attractive semiochemical cues that they produce could lead to development of an attractive lure for surveillance and control of sand flies.


Assuntos
Bactérias/isolamento & purificação , Oviposição , Phlebotomus , Animais , Comportamento Apetitivo/efeitos dos fármacos , Bactérias/química , Meios de Cultura , Feminino , Microbiota , Compostos Orgânicos Voláteis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA