RESUMO
Isoetes cangae is a native plant found only in a permanent pond in Serra dos Carajás in the Amazon region. Plant-associated microbial communities are recognized to be responsible for biological processes essential for the health, growth, and even adaptation of plants to environmental stresses. In this sense, the aims of this work were to isolate, identify, and evaluate the properties of endophytic bacteria isolated from I. cangae. The bioprospecting of potentially growth-promoting endophytes required the following steps to be taken: isolation of endophytic colonies, molecular identification by 16S rDNA sequence analysis, and evaluation of the bacterial potential for nitrogen fixation, production of indole acetic acid and siderophores, as well as phosphate solubilization and mineralization. Bacillus sp., Rhizobium sp., Priestia sp., Acinetobacter sp., Rossellomorea sp., Herbaspirillum sp., Heyndrickxia sp., and Metabacillus sp., among other bacterial species, were identified. The isolates showed to be highly promising, evidencing the physiological importance for the plant and having the potential to promote plant growth.
RESUMO
Candida haemulonii is a complex formed by C. haemulonii sensu stricto, C. haemulonii var. vulnera, and C. duobushaemulonii. Members of this complex are opportunistic pathogens closely related to C. pseudohaemulonii, C. lusitaniae, and C. auris, all members of a multidrug-resistant clade. Complete genome sequences for all members of this group are available in the GenBank database, except for C. haemulonii var. vulnera. Here, we report the first draft genomes of two C. haemulonii var. vulnera (isolates K1 and K2) and comparative genome analysis of closely related fungal species. The isolates were biofilm producers and non-susceptible to amphotericin B and fluconazole. The draft genomes comprised 350 and 387 contigs and total genome sizes of 13.21 and 13.26 Mb, with 5,479 and 5,507 protein-coding genes, respectively, allowing the identification of virulence and resistance genes. Comparative analyses of orthologous genes within the multidrug-resistant clade showed a total of 4,015 core clusters, supporting the conservation of 24,654 proteins and 3,849 single-copy gene clusters. Candida haemulonii var. vulnera shared a larger number of clusters with C. haemulonii and C. auris; however, more singletons were identified in C. lusitaniae and C. auris. Additionally, a multiple sequence alignment of Erg11p proteins revealed variants likely involved in reduced susceptibility to azole and polyene antifungal agents. The data presented in this work will, therefore, be of utmost importance for researchers studying the biology of the C. haemulonii complex and related species.
RESUMO
Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.
Assuntos
Antibacterianos/farmacologia , Organismos Aquáticos/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana , Poríferos/microbiologia , Animais , Brasil , Genes Bacterianos , Testes de Sensibilidade MicrobianaRESUMO
ABSTRACT Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.