Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 107(1): 73-85, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29520948

RESUMO

Highly porous Ti implant materials are being used in order to overcome the stress shielding effect on orthopedic implants. However, the lack of bioactivity on Ti surfaces is still a major concern regarding the osseointegration process. It is known that the rapid recruitment of osteoblasts in bone defects is an essential prerequisite for efficient bone repair. Conventionally, osteoblast recruitment to bone defects and subsequent bone repair has been achieved using growth factors. Thus, in this study highly porous Ti samples were processed by powder metallurgy using space holder technique followed by the bio-functionalization through microarc oxidation using a Ca- and P-rich electrolyte. The biological response in terms of early cell response, namely, adhesion, spreading, viability, and proliferation of the novel biofunctionalized highly porous Ti was carried out with NIH/3T3 fibroblasts and MC3T3-E1 preosteoblasts in terms of viability, adhesion, proliferation, and alkaline phosphatase activity. Results showed that bio-functionalization did not affect the cell viability. However, bio-functionalized highly porous Ti (22% porosity) enhanced the cell proliferation and activity. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 73-85, 2019.


Assuntos
Adesão Celular , Diferenciação Celular , Proliferação de Células , Implantes Experimentais , Osteoblastos/metabolismo , Osteogênese , Titânio/química , Animais , Camundongos , Células NIH 3T3 , Osteoblastos/citologia , Porosidade
2.
J Mech Behav Biomed Mater ; 69: 144-152, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28073074

RESUMO

Titanium and its alloys are widely used in orthopedic and dental implants, however, some major clinical concerns such as poor wear resistance, lack of bioactivity, and bone resorption due to stress shielding are yet to be overcome. In order to improve these drawbacks, highly porous Ti samples having functionalized surfaces were developed by powder metallurgy with space holder technique followed by anodic treatment. Tribocorrosion tests were performed in 9g/L NaCl solution using a unidirectional pin-on-disc tribometer under 3N normal load, 1Hz frequency and 4mm track diameter. Open circuit potential (OCP) was measured before, during and after sliding. Worn surfaces investigated by field emission gun scanning electron microscope (FEG-SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Results suggested bio-functionalized highly porous samples presented lower tendency to corrosion under sliding against zirconia pin, mainly due to the load carrying effect given by the hard protruded oxide surfaces formed by the anodic treatment.


Assuntos
Teste de Materiais , Próteses e Implantes , Titânio/análise , Ligas , Corrosão , Microscopia Eletrônica de Varredura , Porosidade , Propriedades de Superfície
3.
J Biomed Mater Res B Appl Biomater ; 103(3): 661-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24989830

RESUMO

The purpose of this study was to investigate the relationship between the osteoblastic cells behavior and biotribocorrosion phenomena on bioactive titanium (Ti). Ti substrates submitted to bioactive anodic oxidation and etching treatments were cultured up to 28 days with MG63 osteoblast-like cells. Important parameters of in vitro bone-like tissue formation were assessed. Although no major differences were observed between the surfaces topography (both rough) and wettability (both hydrophobic), a significant increase in cell attachment and differentiation was detected on the anodized substrates as product of favorable surface morphology and chemical composition. Alkaline phosphatase production has increased (≈20 nmol/min/mg of protein) on the anodized materials, while phosphate concentration has reached the double of the etched material and calcium production increased (over 20 µg/mL). The mechanical and biological stability of the anodic surfaces were also put to test through biotribocorrosion sliding solicitations, putting in evidence the resistance of the anodic layer and the cells capacity of regeneration after implant degradation. The Ti osteointegration abilities were also confirmed by the development of strong cell-biomaterial bonds at the interface, on both substrates. By combining the biological and mechanical results, the anodized Ti can be considered a viable option for dentistry.


Assuntos
Acetatos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Dentários/química , Glicerofosfatos/farmacologia , Osteoblastos/metabolismo , Óxidos/química , Fósforo/química , Titânio/química , Fosfatase Alcalina/metabolismo , Neoplasias Ósseas/patologia , Compostos de Cálcio/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Forma Celular , Corrosão , Eletroquímica , Fricção , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Osseointegração , Osteoblastos/ultraestrutura , Osteossarcoma/patologia , Oxirredução , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA