Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Genet ; 13(6): e1006863, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28665995

RESUMO

Transcriptome studies on eukaryotic cells have revealed an unexpected abundance and diversity of noncoding RNAs synthesized by RNA polymerase II (Pol II), some of which influence the expression of protein-coding genes. Yet, much less is known about biogenesis of Pol II non-coding RNA than mRNAs. In the budding yeast Saccharomyces cerevisiae, initiation of non-coding transcripts by Pol II appears to be similar to that of mRNAs, but a distinct pathway is utilized for termination of most non-coding RNAs: the Sen1-dependent or "NNS" pathway. Here, we examine the effect on the S. cerevisiae transcriptome of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination: Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1. We observe surprisingly diverse effects on transcript abundance for the different proteins that cannot be explained simply by differing severity of the mutations. Rather, we infer from our results that termination of Pol II transcription of non-coding RNA genes is subject to complex combinatorial control that likely involves proteins beyond those studied here. Furthermore, we identify new targets and functions of Sen1-dependent termination, including a role in repression of meiotic genes in vegetative cells. In combination with other recent whole-genome studies on termination of non-coding RNAs, our results provide promising directions for further investigation.


Assuntos
DNA Helicases/genética , RNA Helicases/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Meiose/genética , Proteínas Mutantes/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Transcriptoma/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
2.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833333

RESUMO

Staphylococcus aureus is a major human pathogen of the skin. The global burden of diabetes is high, with S. aureus being a major complication of diabetic wound infections. We investigated how the diabetic environment influences S. aureus skin infection and observed an increased susceptibility to infection in mouse models of both type I and type II diabetes. A dual gene expression approach was taken to investigate transcriptional alterations in both the host and bacterium after infection. While analysis of the host response revealed only minor changes between infected control and diabetic mice, we observed that S. aureus isolated from diabetic mice had significant increases in the levels of genes associated with translation and posttranslational modification and chaperones and reductions in the levels of genes associated with amino acid transport and metabolism. One family of genes upregulated in S. aureus isolated from diabetic lesions encoded the Clp proteases, associated with the misfolded protein response. The Clp proteases were found to be partially glucose regulated as well as influencing the hemolytic activity of S. aureus Strains lacking the Clp proteases ClpX, ClpC, and ClpP were significantly attenuated in our animal model of skin infection, with significant reductions observed in dermonecrosis and bacterial burden. In particular, mutations in clpP and clpX were significantly attenuated and remained attenuated in both normal and diabetic mice. Our data suggest that the diabetic environment also causes changes to occur in invading pathogens, and one of these virulence determinants is the Clp protease system.


Assuntos
Diabetes Mellitus Experimental/complicações , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Virulência/genética , Virulência/imunologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos
3.
Genes Dev ; 25(12): 1306-19, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21685365

RESUMO

The DNA entry and exit points on the nucleosome core regulate the initial invasion of the nucleosome by factors requiring access to the underlying DNA. Here we describe in vivo consequences of eliminating a single protein-DNA interaction at this position through mutagenesis of histone H3 Lys 42 to alanine. This substitution has a dramatic effect on the Saccharomyces cerevisiae transcriptome in both the transcriptional output and landscape of mRNA species produced. We attribute this in part to decreased histone H3 occupancy at transcriptionally active loci, leading to enhanced elongation. Additionally we show that this lysine is methylated in vivo, and genetic studies of methyl-lysine mimics suggest that this modification may be crucial in attenuating gene expression. Interestingly, this site of methylation is unique to Ascomycota, suggesting a recent evolutionary innovation that highlights the evolvability of post-translational modifications of chromatin.


Assuntos
Evolução Molecular , Regulação Fúngica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/química , Metilação de DNA , Perfilação da Expressão Gênica , Histonas/química , Lisina/química , Modelos Moleculares , Mutação , Proteínas Nucleares/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Fenótipo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 291(29): 15307-19, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226635

RESUMO

Modifier of transcription 1 (Mot1) is a conserved and essential Swi2/Snf2 ATPase that can remove TATA-binding protein (TBP) from DNA using ATP hydrolysis and in so doing exerts global effects on transcription. Spt16 is also essential and functions globally in transcriptional regulation as a component of the facilitates chromatin transcription (FACT) histone chaperone complex. Here we demonstrate that Mot1 and Spt16 regulate a largely overlapping set of genes in Saccharomyces cerevisiae. As expected, Mot1 was found to control TBP levels at co-regulated promoters. In contrast, Spt16 did not affect TBP recruitment. On a global scale, Spt16 was required for Mot1 promoter localization, and Mot1 also affected Spt16 localization to genes. Interestingly, we found that Mot1 has an unanticipated role in establishing or maintaining the occupancy and positioning of nucleosomes at the 5' ends of genes. Spt16 has a broad role in regulating chromatin organization in gene bodies, including those nucleosomes affected by Mot1. These results suggest that the large scale overlap in Mot1 and Spt16 function arises from a combination of both their unique and shared functions in transcription complex assembly and chromatin structure regulation.


Assuntos
Adenosina Trifosfatases/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transcrição Gênica/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Adenosina Trifosfatases/genética , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores de Elongação da Transcrição/genética
5.
Infect Immun ; 83(7): 2672-85, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25895974

RESUMO

Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26 °C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37 °C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.


Assuntos
Perfilação da Expressão Gênica , Macrófagos/microbiologia , Viabilidade Microbiana , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/genética , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Camundongos , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
EMBO J ; 28(19): 2919-31, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19680226

RESUMO

The transcriptional response to damaging agents is of fundamental significance for understanding mechanisms responsible for cell survival and genome maintenance. However, how damage signals are transmitted to the transcriptional apparatus is poorly understood. Here we identify two new regulators of the UV response transcriptome: Snf1, a nutrient-sensing kinase, and Rad23, a nucleotide excision repair factor with no previously known function in transcriptional control. Over half of all UV-responsive genes are dependent on Snf1 or Rad23 for proper regulation. After irradiation, Snf1 targets the Mig3 repressor, a new effector of the UV response. Snf1 and Rad23 are both required for the displacement of Mig3 from the UV-activated HUG1 promoter, and Rad23's activity is functionally linked to the proteasome 19S regulatory particle. Our data reveal overlapping functions for Snf1 and Rad23 in UV-responsive transcriptional regulation and provide mechanistic insight into the action of these factors at a UV-activated promoter. These results also highlight how diverse environmental stimuli are processed by a limited repertoire of signalling molecules to result in tailored patterns of gene expression.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Raios Ultravioleta , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Ativação Enzimática/efeitos da radiação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Genome Res ; 20(12): 1679-88, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20855454

RESUMO

TATA-binding protein (TBP) nucleates the assembly of the transcription preinitiation complex (PIC), and although TBP can bind promoters with high stability in vitro, recent results establish that virtually the entire TBP population is highly dynamic in yeast nuclei in vivo. This dynamic behavior is surprising in light of models that posit that a stable TBP-containing scaffold facilitates transcription reinitiation at active promoters. The dynamic behavior of TBP is a consequence of the enzymatic activity of the essential Snf2/Swi2 ATPase Mot1, suggesting that ensuring a highly mobile TBP population is critical for transcriptional regulation on a global scale. Here high-resolution tiling arrays were used to define how perturbed TBP dynamics impact the precision of RNA synthesis in Saccharomyces cerevisiae. We find that Mot1 plays a broad role in establishing the precision and efficiency of RNA synthesis: In mot1-42 cells, RNA length changes were observed for 713 genes, about twice the number observed in set2Δ cells, which display a previously reported propensity for spurious initiation within open reading frames. Loss of Mot1 led to both aberrant transcription initiation and termination, with prematurely terminated transcripts representing the largest class of events. Genetic and genomic analyses support the conclusion that these effects on RNA length are mechanistically tied to dynamic TBP occupancies at certain types of promoters. These results suggest a new model whereby dynamic disassembly of the PIC can influence productive RNA synthesis.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica/genética , Adenosina Trifosfatases/genética , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética
8.
Nat Commun ; 14(1): 2461, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117207

RESUMO

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.


Assuntos
Algoritmos , Metabolômica , Espectrometria de Massas/métodos , Metabolômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Mobilidade Iônica
9.
Commun Biol ; 1: 173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374463

RESUMO

Dermal interstitial fluid (ISF) is an underutilized information-rich biofluid potentially useful in health status monitoring applications whose contents remain challenging to characterize. Here, we present a facile microneedle approach for dermal ISF extraction with minimal pain and no blistering for human subjects and rats. Extracted ISF volumes were sufficient for determining transcriptome, and proteome signatures. We noted similar profiles in ISF, serum, and plasma samples, suggesting that ISF can be a proxy for direct blood sampling. Dynamic changes in RNA-seq were recorded in ISF from induced hypoxia conditions. Finally, we report the first isolation and characterization, to our knowledge, of exosomes from dermal ISF. The ISF exosome concentration is 12-13 times more enriched when compared to plasma and serum and represents a previously unexplored biofluid for exosome isolation. This minimally invasive extraction approach can enable mechanistic studies of ISF and demonstrates the potential of ISF for real-time health monitoring applications.

10.
PLoS One ; 11(12): e0168788, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28002481

RESUMO

When analyzing pathogen transcriptomes during the infection of host cells, the signal-to-background (pathogen-to-host) ratio of nucleic acids (NA) in infected samples is very small. Despite the advancements in next-generation sequencing, the minute amount of pathogen NA makes standard RNA-seq library preps inadequate for effective gene-level analysis of the pathogen in cases with low bacterial loads. In order to provide a more complete picture of the pathogen transcriptome during an infection, we developed a novel pathogen enrichment technique, which can enrich for transcripts from any cultivable bacteria or virus, using common, readily available laboratory equipment and reagents. To evenly enrich for pathogen transcripts, we generate biotinylated pathogen-targeted capture probes in an enzymatic process using the entire genome of the pathogen as a template. The capture probes are hybridized to a strand-specific cDNA library generated from an RNA sample. The biotinylated probes are captured on a monomeric avidin resin in a miniature spin column, and enriched pathogen-specific cDNA is eluted following a series of washes. To test this method, we performed an in vitro time-course infection using Klebsiella pneumoniae to infect murine macrophage cells. K. pneumoniae transcript enrichment efficiency was evaluated using RNA-seq. Bacterial transcripts were enriched up to ~400-fold, and allowed the recovery of transcripts from ~2000-3600 genes not observed in untreated control samples. These additional transcripts revealed interesting aspects of K. pneumoniae biology including the expression of putative virulence factors and the expression of several genes responsible for antibiotic resistance even in the absence of drugs.


Assuntos
Cromatografia de Afinidade , Klebsiella pneumoniae/genética , Macrófagos/microbiologia , RNA Bacteriano/isolamento & purificação , Animais , Avidina/química , Avidina/metabolismo , Sondas de DNA/química , Sondas de DNA/metabolismo , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Hibridização de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Análise de Sequência de RNA , Transcriptoma
11.
Genome Biol ; 14(5): R48, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23710766

RESUMO

BACKGROUND: The sirtuins are a conserved family of NAD⁺-dependent histone/protein deacetylases that regulate numerous cellular processes, including heterochromatin formation and transcription. Multiple sirtuins are encoded by each eukaryotic genome, raising the possibility of cooperativity or functional overlap. The scope and variety of chromatin binding sites of the sirtuins in any specific organism remain unclear. RESULTS: Here we utilize the ChIP-seq technique to identify and functionally characterize the genome-wide targets of the sirtuins, Sir2, Hst1 to Hst4, and the DNA binding partner of Hst1, Sum 1, in Saccharomyces cerevisiae. Unexpectedly, Sir2, Hst1 and Sum1, but not the other sirtuins, exhibit co-enrichment at several classes of chromatin targets. These include telomeric repeat clusters, tRNA genes, and surprisingly, the open reading frames (ORFs) of multiple highly expressed RNA polymerase II-transcribed genes that function in processes such as fermentation, glycolysis, and translation. Repression of these target genes during the diauxic shift is specifically dependent on Sir2/Hst1/Sum1 binding to the ORF and sufficiently high intracellular NAD⁺ concentrations. Sir2 recruitment to the ORFs is independent of the canonical SIR complex and surprisingly requires Sum1. The shared Sir2/Hst1/Sum1 targets also significantly overlap with condensin and cohesin binding sites, where Sir2, Hst1, and Sum1 were found to be important for condensin and cohesin deposition, suggesting a possible mechanistic link between metabolism and chromatin architecture during the diauxic shift. CONCLUSIONS: This study demonstrates the existence of overlap in sirtuin function, and advances our understanding of conserved sirtuin-regulated functions, including the regulation of glycolytic gene expression and condensin loading.


Assuntos
Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Homeostase do Telômero , Coesinas
12.
Science ; 342(6156): 369-72, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24091704

RESUMO

The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins, but it is unknown how stable most native interactions are. Although live-cell imaging suggests short-lived interactions at tandem gene arrays, current methods cannot measure rapid binding dynamics at single-copy genes. We show, by using a modified ChIP assay with subsecond temporal resolution, that the time dependence of formaldehyde cross-linking can be used to extract in vivo on and off rates for site-specific chromatin interactions varying over a ~100-fold dynamic range. By using the method, we show that a regulatory process can shift weakly bound TATA-binding protein to stable promoter interactions, thereby facilitating transcription complex formation. This assay provides an approach for systematic, quantitative analyses of chromatin binding dynamics in vivo.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Regulação da Expressão Gênica , Proteína de Ligação a TATA-Box/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Cromatina/química , Reagentes de Ligações Cruzadas/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Formaldeído/química , Dosagem de Genes , Cinética , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/química , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA