Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7999): 611-616, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297119

RESUMO

Precise control of cell division is essential for proper patterning and growth during the development of multicellular organisms. Coordination of formative divisions that generate new tissue patterns with proliferative divisions that promote growth is poorly understood. SHORTROOT (SHR) and SCARECROW (SCR) are transcription factors that are required for formative divisions in the stem cell niche of Arabidopsis roots1,2. Here we show that levels of SHR and SCR early in the cell cycle determine the orientation of the division plane, resulting in either formative or proliferative cell division. We used 4D quantitative, long-term and frequent (every 15 min for up to 48 h) light sheet and confocal microscopy to probe the dynamics of SHR and SCR in tandem within single cells of living roots. Directly controlling their dynamics with an SHR induction system enabled us to challenge an existing bistable model3 of the SHR-SCR gene-regulatory network and to identify key features that are essential for rescue of formative divisions in shr mutants. SHR and SCR kinetics do not align with the expected behaviour of a bistable system, and only low transient levels, present early in the cell cycle, are required for formative divisions. These results reveal an uncharacterized mechanism by which developmental regulators directly coordinate patterning and growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclo Celular , Raízes de Plantas , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Divisão Celular/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Microscopia Confocal , Mutação
2.
Proc Natl Acad Sci U S A ; 119(46): e2208294119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343235

RESUMO

Microtubules are essential cytoskeletal polymers that exhibit stochastic switches between tubulin assembly and disassembly. Here, we examine possible mechanisms for these switches, called catastrophes and rescues. We formulate a four-state Monte Carlo model, explicitly considering two biochemical and two conformational states of tubulin, based on a recently conceived view of microtubule assembly with flared ends. The model predicts that high activation energy barriers for lateral tubulin interactions can cause lagging of curled protofilaments, leading to a ragged appearance of the growing tip. Changes in the extent of tip raggedness explain some important but poorly understood features of microtubule catastrophe: weak dependence on tubulin concentration and an increase in its probability over time, known as aging. The model predicts a vanishingly rare frequency of spontaneous rescue unless patches of guanosine triphosphate tubulin are artificially embedded into microtubule lattice. To test our model, we used in vitro reconstitution, designed to minimize artifacts induced by microtubule interaction with nearby surfaces. Microtubules were assembled from seeds overhanging from microfabricated pedestals and thus well separated from the coverslip. This geometry reduced the rescue frequency and the incorporation of tubulins into the microtubule shaft compared with the conventional assay, producing data consistent with the model. Moreover, the rescue positions of microtubules nucleated from coverslip-immobilized seeds displayed a nonexponential distribution, confirming that coverslips can affect microtubule dynamics. Overall, our study establishes a unified theory accounting for microtubule assembly with flared ends, a tip structure-dependent catastrophe frequency, and a microtubule rescue frequency dependent on lattice damage and repair.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Guanosina Trifosfato/metabolismo , Método de Monte Carlo
3.
Arch Biochem Biophys ; 756: 110011, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649133

RESUMO

Structure-function relationships are key to understanding enzyme mechanisms, controlling enzyme activities, and designing biocatalysts. Here, we investigate the functions of arginine residues in the active sites of pyridoxal-5'-phosphate (PLP)-dependent non-canonical d-amino acid transaminases, focusing on the analysis of a transaminase from Haliscomenobacter hydrossis. Our results show that the tandem of arginine residues R28* and R90, which form the conserved R-[RK] motif in non-canonical d-amino acid transaminases, not only facilitates effective substrate binding but also regulates the catalytic properties of PLP. Non-covalent interactions between residues R28*, R90, and Y147 strengthen the hydrogen bond between Y147 and PLP, thereby maintaining the reactivity of the cofactor. Next, the R90 residue contributes to the stability of the holoenzyme. Finally, the R90I substitution induces structural changes that lead to substrate promiscuity, as evidenced by the effective binding of substrates with and without the α-carboxylate group. This study sheds light on the structural determinants of the activity of non-canonical d-amino acid transaminases. Understanding the structural basis of the active site plasticity in the non-canonical transaminase from H. hydrossis, which is characterized by effective conversion of d-amino acids and α-keto acids, may help to tailor it for industrial applications.


Assuntos
Arginina , Domínio Catalítico , Fosfato de Piridoxal , Transaminases , Transaminases/metabolismo , Transaminases/química , Arginina/química , Arginina/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Especificidade por Substrato , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares
4.
Cell Biol Int ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023281

RESUMO

Pulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis. Our study aimed to investigate the potential of MSCs to inhibit pulmonary fibrosis as well as the contribution of uPAR expression to this effect. We found that intravenous MSC administration significantly reduced lung fibrosis in the bleomycin-induced pulmonary fibrosis model in mice as revealed by MRI and histological evaluations. Notably, administering the MSCs isolated from adipose tissue of uPAR knockout mice (Plaur-/- MSCs) attenuated lung fibrosis to a lesser extent as compared to WT MSCs. Collagen deposition, a hallmark of fibrosis, was markedly reduced in lungs treated with WT MSCs versus Plaur-/- MSCs. Along with that, endogenous uPA levels were affected differently; after Plaur-/- MSCs were administered, the uPA content was specifically decreased within the blood vessels. Our findings support the potential of MSC treatment in attenuating pulmonary fibrosis. We provide evidence that the observed anti-fibrotic effect depends on uPAR expression in MSCs, suggesting that uPAR might counteract the uPA accumulation in lungs.

5.
Biochem J ; 480(16): 1267-1284, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37548495

RESUMO

The development of biocatalysts requires reorganization of the enzyme's active site to facilitate the productive binding of the target substrate and improve turnover number at desired conditions. Pyridoxal-5'-phosphate (PLP) - dependent transaminases are highly efficient biocatalysts for asymmetric amination of ketones and keto acids. However, transaminases, being stereoselective enzymes, have a narrow substrate specificity due to the ordered structure of the active site and work only in neutral-alkaline media. Here, we investigated the d-amino acid transaminase from Aminobacterium colombiense, with the active site organized differently from that of the canonical d-amino acid transaminase from Bacillus sp. YM-1. Using a combination of site-directed mutagenesis, kinetic analysis, molecular modeling, and structural analysis we determined the active site residues responsible for substrate binding, substrate differentiation, thermostability of a functional dimer, and affecting the pH optimum. We demonstrated that the high specificity toward d-glutamate/α-ketoglutarate is due to the interactions of a γ-carboxylate group with K237 residue, while binding of other substrates stems from the effectiveness of their accommodation in the active site optimized for d-glutamate/α-ketoglutarate binding. Furthermore, we showed that the K237A substitution shifts the catalytic activity optimum to acidic pH. Our findings are useful for achieving target substrate specificity and demonstrate the potential for developing and optimizing transaminases for various applications.


Assuntos
Aminoácidos , Transaminases , Transaminases/metabolismo , Ácidos Cetoglutáricos , Ácido Glutâmico , Especificidade por Substrato , Cinética , Concentração de Íons de Hidrogênio
6.
Childs Nerv Syst ; 40(6): 1881-1888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427108

RESUMO

PURPOSE: 3D printing technologies have become an integral part of modern life, and the most routinely used materials in reconstructive surgery in children are biodegradable materials. The combination of these two technologies opens up new possibilities for the application of innovative methods in neurosurgery and a patient-centered approach in medical care. The aim of the study was to determine whether a physician without specialized programming and printing skills could independently create materials in a clinical setting for the treatment of patients. METHODS: We conducted a preclinical study on 15 male Balb-C mice. Cylindrical materials made of polylactic acid (PLA) plastic were 3D printed. Sterilization of the obtained material was performed using a cold plasma sterilizer with hydrogen peroxide vapor and its plasma. The sterile material was implanted subcutaneously into the mice for 30 days, followed by histological examination. Using open-source software for modeling and printing, plates and screws made of PLA plastic were manufactured. The produced components were tested in the biomedical laboratory of the institute. RESULTS: The histological material showed that no inflammatory changes were observed at the implantation site during the entire observation period. The cellular composition is mainly represented by macrophages and fibroblasts. There was a gradual resolution of the material and its replacement by native tissues. Research conducted to assess the effectiveness of material sterilization in a cold plasma sterilizer demonstrated its high bactericidal efficiency. CONCLUSION: The method we developed for obtaining biodegradable plates and fixation elements on a 3D printer is easy to use and has demonstrated safety in a preclinical study on an animal model.


Assuntos
Camundongos Endogâmicos BALB C , Impressão Tridimensional , Animais , Masculino , Camundongos , Procedimentos Neurocirúrgicos/métodos , Poliésteres , Implantes Absorvíveis , Materiais Biocompatíveis , Humanos
7.
Biochem Biophys Res Commun ; 682: 91-96, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37804592

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels composed of five homologous subunits. The homopentameric α7-nAChR, abundantly expressed in the brain, is involved in the regulation of the neuronal plasticity and memory and undergoes phosphorylation by protein kinase A (PKA). Here, we extracted native α7-nAChR from murine brain, validated its assembly by cryo-EM and showed that phosphorylation by PKA in vitro enables its interaction with the abundant human brain protein 14-3-3ζ. Bioinformatic analysis narrowed the putative 14-3-3-binding site down to the fragment of the intracellular loop (ICL) containing Ser365 (Q361RRCSLASVEMS372), known to be phosphorylated in vivo. We reconstructed the 14-3-3ζ/ICL peptide complex and determined its structure by X-ray crystallography, which confirmed the Ser365 phosphorylation-dependent canonical recognition of the ICL by 14-3-3. A common mechanism of nAChRs' regulation by ICL phosphorylation and 14-3-3 binding that potentially affects nAChR activity, stoichiometry, and surface expression is suggested.


Assuntos
Proteínas 14-3-3 , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Humanos , Camundongos , Proteínas 14-3-3/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , Receptores Nicotínicos/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-37770756

RESUMO

Short-latency auditory-evoked potentials (AEPs) were recorded non-invasively in the bottlenose dolphin Tursiops truncatus. The stimuli were two sound clicks that were played either monaurally (both clicks to one and the same acoustic window) or dichotically (the leading stimulus (masker) to one acoustic window and the delayed stimulus (test) to the other window). The ratio of the levels of the two stimuli was 0, 10, or 20 dB (at 10 and 20 dB, the leading stimulus was of a higher level). The inter-stimulus intervals (ISIs) varied from 0.15 to 10 ms. The test response magnitude was assessed by correlation analysis as a percentage of the control (non-masked) response. At monaural stimulation, the test response was of a constant magnitude (5-6% of the control) at ISIs of 0.15-0.3 ms and recovered at longer ISIs. At dichotic stimulation, the deepest suppression of the test response occurred at ISIs of 0.5-0.7 ms. The response was slightly suppressed at short ISIs (0.15-0.3 ms) and recovered at ISIs longer than 0.5-0.7 ms. The relation of parameters of the forward masking to echolocation in dolphins is discussed.

9.
Biochemistry (Mosc) ; 88(5): 687-697, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331714

RESUMO

D-cycloserine inhibits pyridoxal-5'-phosphate (PLP)-dependent enzymes. Inhibition effect depend on organization of the active site and mechanism of the catalyzed reaction. D-cycloserine interacts with the PLP form of the enzyme similarly to the substrate (amino acid), and this interaction is predominantly reversible. Several products of the interaction of PLP with D-cycloserine are known. For some enzymes formation of a stable aromatic product - hydroxyisoxazole-pyridoxamine-5'-phosphate at certain pH - leads to irreversible inhibition. The aim of this work was to study the mechanism of D-cycloserine inhibition of the PLP-dependent D-amino acid transaminase from Haliscomenobacter hydrossis. Spectral methods revealed several products of interaction of D-cycloserine with PLP in the active site of transaminase: oxime between PLP and ß-aminooxy-D-alanine, ketimine between pyridoxamine-5'-phosphate and cyclic form of D-cycloserine, and pyridoxamine-5'-phosphate. Formation of hydroxyisoxazole-pyridoxamine-5'-phosphate was not observed. 3D structure of the complex with D-cycloserine was obtained using X-ray diffraction analysis. In the active site of transaminase, a ketimine adduct between pyridoxamine-5'-phosphate and D-cycloserine in the cyclic form was found. Ketimine occupied two positions interacting with different active site residues via hydrogen bonds. Using kinetic and spectral methods we have shown that D-cycloserine inhibition is reversible, and activity of the inhibited transaminase from H. hydrossis could be restored by adding excess of keto substrate or excess of cofactor. The obtained results confirm reversibility of the inhibition by D-cycloserine and interconversion of various adducts of D-cycloserine and PLP.


Assuntos
Aminoácidos , Transaminases , Transaminases/química , Ciclosserina/farmacologia , Ciclosserina/química , Piridoxamina/química , Fosfato de Piridoxal
10.
Nucleic Acids Res ; 49(4): 2375-2389, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33638995

RESUMO

In arthropods, zinc finger-associated domains (ZADs) are found at the N-termini of many DNA-binding proteins with tandem arrays of Cys2-His2 zinc fingers (ZAD-C2H2 proteins). ZAD-C2H2 proteins undergo fast evolutionary lineage-specific expansion and functional diversification. Here, we show that all ZADs from Drosophila melanogaster form homodimers, but only certain ZADs with high homology can also heterodimerize. CG2712, for example, is unable to heterodimerize with its paralog, the previously characterized insulator protein Zw5, with which it shares 46% homology. We obtained a crystal structure of CG2712 protein's ZAD domain that, in spite of a low sequence homology, has similar spatial organization with the only known ZAD structure (from Grauzone protein). Steric clashes prevented the formation of heterodimers between Grauzone and CG2712 ZADs. Using detailed structural analysis, site-directed mutagenesis, and molecular dynamics simulations, we demonstrated that rapid evolutionary acquisition of interaction specificity was mediated by the more energy-favorable formation of homodimers in comparison to heterodimers, and that this specificity was achieved by multiple amino acid substitutions resulting in the formation or breaking of stabilizing interactions. We speculate that specific homodimerization of ZAD-C2H2 proteins is important for their architectural role in genome organization.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Dedos de Zinco , Animais , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Dimerização , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster , Modelos Moleculares , Mutagênese , Multimerização Proteica , Fatores de Transcrição/química
11.
Proc Natl Acad Sci U S A ; 117(10): 5280-5290, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094184

RESUMO

Biocatalytic copper centers are generally involved in the activation and reduction of dioxygen, with only few exceptions known. Here we report the discovery and characterization of a previously undescribed copper center that forms the active site of a copper-containing enzyme thiocyanate dehydrogenase (suggested EC 1.8.2.7) that was purified from the haloalkaliphilic sulfur-oxidizing bacterium of the genus Thioalkalivibrio ubiquitous in saline alkaline soda lakes. The copper cluster is formed by three copper ions located at the corners of a near-isosceles triangle and facilitates a direct thiocyanate conversion into cyanate, elemental sulfur, and two reducing equivalents without involvement of molecular oxygen. A molecular mechanism of catalysis is suggested based on high-resolution three-dimensional structures, electron paramagnetic resonance (EPR) spectroscopy, quantum mechanics/molecular mechanics (QM/MM) simulations, kinetic studies, and the results of site-directed mutagenesis.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Cobre/química , Ectothiorhodospiraceae/enzimologia , Oxirredutases/química , Bactérias Redutoras de Enxofre/enzimologia , Biocatálise , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/química , Enxofre/química
12.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687982

RESUMO

Prostate cancer (PC) is one of the major causes of death among elderly men. PC is often diagnosed later in progression due to asymptomatic early stages. Early detection of PC is thus crucial for effective PC treatment. The aim of this study is the simultaneous highly sensitive detection of a palette of PC-associated microRNAs (miRNAs) in human plasma samples. With this aim, a nanoribbon biosensor system based on "silicon-on-insulator" structures (SOI-NR biosensor) has been employed. In order to provide biospecific detection of the target miRNAs, the surface of individual nanoribbons has been sensitized with DNA oligonucleotide probes (oDNA probes) complementary to the target miRNAs. The lowest concentration of nucleic acids, detectable with our biosensor, has been found to be 1.1 × 10-17 M. The successful detection of target miRNAs, isolated from real plasma samples of PC patients, has also been demonstrated. We believe that the development of highly sensitive nanotechnology-based biosensors for the detection of PC markers is a step towards personalized medicine.


Assuntos
MicroRNAs , Nanotubos de Carbono , Ácidos Nucleicos , Neoplasias da Próstata , Idoso , Masculino , Humanos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Nanotecnologia
13.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175610

RESUMO

The mRubyFT is a monomeric genetically encoded fluorescent timer based on the mRuby2 fluorescent protein, which is characterized by the complete maturation of the blue form with the subsequent conversion to the red one. It has higher brightness in mammalian cells and higher photostability compared with other fluorescent timers. A high-resolution structure is a known characteristic of the mRubyFT with the red form chromophore, but structural details of its blue form remain obscure. In order to obtain insight into this, we obtained an S148I variant of the mRubyFT (mRubyFTS148I) with the blocked over time blue form of the chromophore. X-ray data at a 1.8 Å resolution allowed us to propose a chromophore conformation and its interactions with the neighboring residues. The imidazolidinone moiety of the chromophore is completely matured, being a conjugated π-system. The methine bridge is not oxidized in the blue form bringing flexibility to the phenolic moiety that manifests itself in poor electron density. Integration of these data with the results of molecular dynamic simulation disclosed that the OH group of the phenolic moiety forms a hydrogen bond with the side chain of the T163 residue. A detailed comparison of mRubyFTS148I with other available structures of the blue form of fluorescent proteins, Blue102 and mTagBFP, revealed a number of characteristic differences. Molecular dynamic simulations with the combined quantum mechanic/molecular mechanic potentials demonstrated that the blue form exists in two protonation states, anion and zwitterion, both sharing enolate tautomeric forms of the C=C-O- fragment. These two forms have similar excitation energies, as evaluated by calculations. Finally, excited state molecular dynamic simulations showed that excitation of the chromophore in both protonation states leads to the same anionic fluorescent state. The data obtained shed light on the structural features and spectral properties of the blue form of the mRubyFT timer.


Assuntos
Corantes , Simulação de Dinâmica Molecular , Proteínas Luminescentes/metabolismo , Proteínas de Fluorescência Verde/química
14.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003383

RESUMO

Enzymes with expanded substrate specificity are good starting points for the design of biocatalysts for target reactions. However, the structural basis of the expanded substrate specificity is still elusive, especially in the superfamily of pyridoxal-5'-phosphate-dependent transaminases, which are characterized by a conserved organization of both the active site and functional dimer. Here, we analyze the structure-function relationships in a non-canonical D-amino acid transaminase from Blastococcus saxobsidens, which is active towards D-amino acids and primary (R)-amines. A detailed study of the enzyme includes a kinetic analysis of its substrate scope and a structural analysis of the holoenzyme and its complex with phenylhydrazine-a reversible inhibitor and analogue of (R)-1-phenylethylamine-a benchmark substrate of (R)-selective amine transaminases. We suggest that the features of the active site of transaminase from B. saxobsidens, such as the flexibility of the R34 and R96 residues, the lack of bulky residues in the ß-turn at the entrance to the active site, and the short O-pocket loop, facilitate the binding of substrates with and without α-carboxylate groups. The proposed structural determinants of the expanded substrate specificity can be used for the design of transaminases for the stereoselective amination of keto compounds.


Assuntos
Aminoácidos , Transaminases , Transaminases/metabolismo , Especificidade por Substrato , Cinética , Fenetilaminas/metabolismo
15.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674896

RESUMO

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Assuntos
COVID-19 , Lesão Pulmonar , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , COVID-19/complicações , Fibrose , Plasminogênio , Bleomicina/toxicidade
16.
Int J Mol Sci ; 24(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37762507

RESUMO

T-cadherin is a regulator of blood vessel remodeling and angiogenesis, involved in adiponectin-mediated protective effects in the cardiovascular system and in skeletal muscles. GWAS study has previously demonstrated a SNP in the Cdh13 gene to be associated with hypertension. However, the role of T-cadherin in regulating blood pressure has not been experimentally elucidated. Herein, we generated Cdh13∆Exon3 mice lacking exon 3 in the Cdh13 gene and described their phenotype. Cdh13∆Exon3 mice exhibited normal gross morphology, life expectancy, and breeding capacity. Meanwhile, their body weight was considerably lower than of WT mice. When running on a treadmill, the time spent running and the distance covered by Cdh13∆Exon3 mice was similar to that of WT. The resting blood pressure in Cdh13∆Exon3 mice was slightly higher than in WT, however, upon intensive physical training their systolic blood pressure was significantly elevated. While adiponectin content in the myocardium of Cdh13∆Exon3 and WT mice was within the same range, adiponectin plasma level was 4.37-fold higher in Cdh13∆Exon3 mice. Moreover, intensive physical training augmented the AMPK phosphorylation in the skeletal muscles and myocardium of Cdh13∆Exon3 mice as compared to WT. Our data highlight a critically important role of T-cadherin in regulation of blood pressure and stamina in mice, and may shed light on the pathogenesis of hypertension.


Assuntos
Adiponectina , Hipertensão , Animais , Camundongos , Pressão Sanguínea , Adiponectina/genética , Caderinas/genética , Hipertensão/genética
17.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903355

RESUMO

Pyridoxal-5'-phosphate (PLP)-dependent transaminases are highly efficient biocatalysts for stereoselective amination. D-amino acid transaminases can catalyze stereoselective transamination producing optically pure D-amino acids. The knowledge of substrate binding mode and substrate differentiation mechanism in D-amino acid transaminases comes down to the analysis of the transaminase from Bacillus subtilis. However, at least two groups of D-amino acid transaminases differing in the active site organization are known today. Here, we present a detailed study of D-amino acid transaminase from the gram-negative bacterium Aminobacterium colombiense with a substrate binding mode different from that for the transaminase from B. subtilis. We study the enzyme using kinetic analysis, molecular modeling, and structural analysis of holoenzyme and its complex with D-glutamate. We compare the multipoint binding of D-glutamate with the binding of other substrates, D-aspartate and D-ornithine. QM/MM MD simulation reveals that the substrate can act as a base and its proton can be transferred from the amino group to the α-carboxylate group. This process occurs simultaneously with the nucleophilic attack of the PLP carbon atom by the nitrogen atom of the substrate forming gem-diamine at the transimination step. This explains the absence of the catalytic activity toward (R)-amines that lack an α-carboxylate group. The obtained results clarify another substrate binding mode in D-amino acid transaminases and underpinned the substrate activation mechanism.


Assuntos
Aminoácidos , Transaminases , Transaminases/metabolismo , Ácido Glutâmico , Cinética , Bacillus subtilis/metabolismo , Fosfato de Piridoxal/metabolismo , Catálise , Especificidade por Substrato
18.
Biochem Biophys Res Commun ; 619: 124-129, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35760008

RESUMO

De novo DNA methylation in early mammalian development depends on the activity of the DNMT3 methyltransferase family. An autoinhibitory mechanism involving the interaction between ADD and the catalytic domains of DNMT3A has been described. ADD is a zinc-coordinating histone-binding domain. The ADD domain of DNMT3A, when bound to a K4-unmethylated histone H3 tail, switches the enzyme to its catalytically active state. DNMT3B is another de novo methyltransferase enzyme with a more strict tissue- and stage-specific expression profile and a slightly different site specificity, lacking cooperative DNA methylation activity. Here, we obtained the crystal structure of the DNMT3B ADD domain, which demonstrated the extended conformation of the autoinhibitory loop even in the absence of the histone H3 tail. The lack of interaction between DNMT3B ADD and the methyltransferase domain was confirmed using an in vitro pull-down assay. The structural rearrangements in the loop also created an additional protein interaction interface leading to the formation of trimers in crystal, which may reflect their possible involvement in some unknown protein-protein interactions. Our results suggest that DNMT3B, in contrast to DNMT3A, has different modes of regulation of its activity that are independent of H3K4 methylation status.


Assuntos
DNA Metiltransferase 3A , Histonas , Animais , Domínio Catalítico , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Histonas/metabolismo , Mamíferos/metabolismo , Ligação Proteica
19.
Artigo em Inglês | MEDLINE | ID: mdl-36239812

RESUMO

Forward masking was investigated by the auditory evoked potentials (AEP) method in a bottlenose dolphin Tursiops truncatus using stimulation by two successive acoustic pulses (the masker and test) projected from spatially separated sources. The positions of the two sound sources either coincided with or were symmetrical relative to the head axis at azimuths from 0 to ± 90°. AEPs were recorded either from the vertex or from the lateral head surface next to the auditory meatus. In the last case, the test source was ipsilateral to the recording side, whereas the masker source was either ipsi- or contralateral. For lateral recording, AEP release from masking (recovery) was slower for the ipsi- than for the contralateral masker source position. For vertex recording, AEP recovery was equal both for the coinciding positions of the masker and test sources and for their symmetrical positions relative to the head axis. The data indicate that at higher levels of the auditory system of the dolphin, binaural convergence makes the forward masking nearly equal for ipsi- and contralateral positions of the masker and test.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Golfinho Nariz-de-Garrafa/fisiologia , Estimulação Acústica , Potenciais Evocados Auditivos/fisiologia , Som , Acústica , Mascaramento Perceptivo/fisiologia , Limiar Auditivo/fisiologia
20.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012677

RESUMO

Idiopathic male infertility is a highly prevalent diagnosis in developed countries with no specific treatment options. Although empirical medical treatment is widely used to restore male fertility, its efficacy remains limited and inconclusively proven. Therefore, the development of novel therapeutic approaches in this field is a high-priority task. Since the failure of testicular microenvironment components might be involved in the pathogenesis of idiopathic male infertility, application of mesenchymal stromal cells (MSCs) as well as the MSC secretome is worth considering. Previously, we showed that the intratesticular injection of MSCs or the MSC secretome led to the recovery of spermatogenesis at least through replenishing the testicular microenvironment and its maintenance by MSC-secreted paracrine factors. However, the clinical use of such products has been limited to single trials to date. This may be due to the lack of relevant potency tests reflecting mechanisms of action of the MSC secretome in male infertility models. Based on the presumptive MSC secretome mode of action on the testicular microenvironment, we suggest a novel approach to test the potential efficacy of the MSC secretome for idiopathic male infertility treatment. It represents a potency assay based on evaluation of testosterone production by isolated Leydig cells. We demonstrated that the MSC secretome stimulated testosterone secretion by Leydig cells in vitro. We then hypothesized that among the major factors of the MSC secretome, vascular endothelial growth factor (VEGF) could be responsible for the observed effects, which we confirmed by the revealed correlation between the extent of stimulated testosterone production and VEGF concentration in the MSC secretome. The pilot results obtained from the doxorubicin-induced male infertility murine model also indicate the important impact of VEGF in the MSC secretome's regenerative effects. Utilizing VEGF as a surrogate factor, a novel approach to study the potency of MSC secretome-based products for idiopathic male infertility treatment is suggested. Further validation is required for its implementation into the biopharmaceutical manufacturing process.


Assuntos
Infertilidade Masculina , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/terapia , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Secretoma , Testosterona/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA