Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 51(6): 2862-2876, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36864669

RESUMO

Understanding the assembly principles of biological macromolecular complexes remains a significant challenge, due to the complexity of the systems and the difficulties in developing experimental approaches. As a ribonucleoprotein complex, the ribosome serves as a model system for the profiling of macromolecular complex assembly. In this work, we report an ensemble of large ribosomal subunit intermediate structures that accumulate during synthesis in a near-physiological and co-transcriptional in vitro reconstitution system. Thirteen pre-50S intermediate maps covering the entire assembly process were resolved using cryo-EM single-particle analysis and heterogeneous subclassification. Segmentation of the set of density maps reveals that the 50S ribosome intermediates assemble based on fourteen cooperative assembly blocks, including the smallest assembly core reported to date, which is composed of a 600-nucleotide-long folded rRNA and three ribosomal proteins. The cooperative blocks assemble onto the assembly core following defined dependencies, revealing the parallel pathways at both early and late assembly stages of the 50S subunit.


Assuntos
RNA Ribossômico , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo
2.
J Am Chem Soc ; 136(5): 2058-69, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24422502

RESUMO

Post-transcriptional RNA modifications that are introduced during the multistep ribosome biogenesis process are essential for protein synthesis. The current lack of a comprehensive method for a fast quantitative analysis of rRNA modifications significantly limits our understanding of how individual modification steps are coordinated during biogenesis inside the cell. Here, an LC-MS approach has been developed and successfully applied for quantitative monitoring of 29 out of 36 modified residues in the 16S and 23S rRNA from Escherichia coli . An isotope labeling strategy is described for efficient identification of ribose and base methylations, and a novel metabolic labeling approach is presented to allow identification of MS-silent pseudouridine modifications. The method was used to measure relative abundances of modified residues in incomplete ribosomal subunits compared to a mature (15)N-labeled rRNA standard, and a number of modifications in both 16S and 23S rRNA were present in substoichiometric amounts in the preribosomal particles. The RNA modification levels correlate well with previously obtained profiles for the ribosomal proteins, suggesting that RNA is modified in a schedule comparable to the association of the ribosomal proteins. Importantly, this study establishes an efficient workflow for a global monitoring of ribosomal modifications that will contribute to a better understanding of mechanisms of RNA modifications and their impact on intracellular processes in the future.


Assuntos
Escherichia coli , Espectrometria de Massas/métodos , Processamento Pós-Transcricional do RNA , RNA Ribossômico 16S/química , RNA Ribossômico 23S/química , Cromatografia Líquida/métodos , Escherichia coli/enzimologia , Marcação por Isótopo , Isótopos de Nitrogênio , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/metabolismo
3.
bioRxiv ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38765983

RESUMO

Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. B. subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after E. coli and T. thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.

4.
Nat Commun ; 13(1): 2424, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505047

RESUMO

Mass spectrometry is an important method for analysis of modified nucleosides ubiquitously present in cellular RNAs, in particular for ribosomal and transfer RNAs that play crucial roles in mRNA translation and decoding. Furthermore, modifications have effect on the lifetimes of nucleic acids in plasma and cells and are consequently incorporated into RNA therapeutics. To provide an analytical tool for sequence characterization of modified RNAs, we developed Pytheas, an open-source software package for automated analysis of tandem MS data for RNA. The main features of Pytheas are flexible handling of isotope labeling and RNA modifications, with false discovery rate statistical validation based on sequence decoys. We demonstrate bottom-up mass spectrometry characterization of diverse RNA sequences, with broad applications in the biology of stable RNAs, and quality control of RNA therapeutics and mRNA vaccines.


Assuntos
RNA , Espectrometria de Massas em Tandem , Sequência de Bases , RNA/química , RNA de Transferência/química , Software , Espectrometria de Massas em Tandem/métodos
5.
Biophys J ; 99(7): 2180-9, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20923652

RESUMO

In this report, stereospecific structural and dynamic features in DNA are studied using the site-directed spin labeling technique. A stable nitroxide radical, 1-oxyl-4-bromo-2,2,5,5-tetramethylpyrroline (R5a), was attached postsynthetically to phosphorothioates that were chemically introduced, one at a time, at five sites of a DNA duplex. The two phosphorothioate diastereomers (R(p) or S(p)) were separated, and nitroxide rotational motions were monitored using electron paramagnetic resonance spectroscopy. The resulting spectra vary according to diastereomer identity and location of the labeling site, with R(p)-R5a spectra effectively reporting on local DNA structural features and S(p)-R5a spectra sensing variations in local DNA motions. This establishes R(p)- and S(p)-R5a as unique probes for investigating nucleic acids in a site- and stereospecific manner, which may aid studies of stereospecific DNA/protein interactions. In addition, weighted averages of individual R(p) and S(p) spectra match those of R5a attached to mixed diastereomers. This suggests that R5a linked to mixed diastereomers reports on the composite behaviors of R(p)- and S(p)-R5a and is useful in initial probing of the DNA local environment. This work advances understanding of R5a/DNA coupling, and is a key step forward in developing a nucleotide-independent spectroscopic probe for studying nucleic acids.


Assuntos
DNA/química , Óxidos de Nitrogênio/química , Nucleotídeos/química , Marcadores de Spin , Cromatografia Líquida de Alta Pressão , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Conformação Molecular , Movimento (Física) , Oligonucleotídeos Fosforotioatos/química , Estereoisomerismo , Temperatura
6.
J Mol Biol ; 432(4): 978-990, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31877323

RESUMO

RNA helicases play various roles in ribosome biogenesis depending on the ribosome assembly pathway and stress state of the cell. However, it is unclear how most RNA helicases interact with ribosome assembly intermediates or participate in other cell processes to regulate ribosome assembly. SrmB is a DEAD-box helicase that acts early in the ribosome assembly process, although very little is known about its mechanism of action. Here, we use a combined quantitative mass spectrometry/cryo-electron microscopy approach to detail the protein inventory, rRNA modification state, and structures of 40S ribosomal intermediates that form upon SrmB deletion. We show that the binding site of SrmB is unperturbed by SrmB deletion, but the peptidyl transferase center, the uL7/12 stalk, and 30S contact sites all show severe assembly defects. Taking into account existing data on SrmB function and the experiments presented here, we propose several mechanisms by which SrmB could guide assembling particles from kinetic traps to competent subunits during the 50S ribosome assembly process.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Escherichia coli/metabolismo , Sítios de Ligação/genética , Microscopia Crioeletrônica , RNA Helicases DEAD-box/genética , Proteínas de Escherichia coli/genética , Espectrometria de Massas , Mutação/genética , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Subunidades Ribossômicas Maiores de Arqueas/genética , Subunidades Ribossômicas Maiores de Arqueas/metabolismo , Subunidades Ribossômicas Maiores de Arqueas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura
7.
Biochemistry ; 48(36): 8540-50, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19650666

RESUMO

In site-directed spin labeling, a covalently attached nitroxide probe containing a chemically inert unpaired electron is utilized to obtain information on the local environment of the parent macromolecule. Studies presented here examine the feasibility of probing local DNA structural and dynamic features using a class of nitroxide probes that are linked to chemically substituted phosphorothioate positions at the DNA backbone. Two members of this family, designated as R5 and R5a, were attached to eight different sites of a dodecameric DNA duplex without severely perturbing the native B-form conformation. Measured X-band electron paramagnetic resonance (EPR) spectra, which report on nitroxide rotational motions, were found to vary depending on the location of the label (e.g., duplex center vs termini) and the surrounding DNA sequence. This indicates that R5 and R5a can provide information on the DNA local environment at the level of an individual nucleotide. As these probes can be attached to arbitrary nucleotides within a nucleic acid sequence, they may provide a means to "scan" a given DNA molecule in order to interrogate its local structural and dynamic features.


Assuntos
Sondas de DNA/química , Óxidos de Nitrogênio/química , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Oligonucleotídeos Fosforotioatos/química , Marcadores de Spin , Sondas de DNA/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Óxidos de Nitrogênio/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Relação Estrutura-Atividade , Termodinâmica
8.
BMC Biophys ; 8: 6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897395

RESUMO

BACKGROUND: Spin labels, which are chemically stable radicals attached at specific sites of a bio-molecule, enable investigations on structure and dynamics of proteins and nucleic acids using techniques such as site-directed spin labeling and paramagnetic NMR. Among spin labels developed, the class of rigid labels have limited or no independent motions between the radical bearing moiety and the target, and afford a number of advantages in measuring distances and monitoring local dynamics within the parent bio-molecule. However, a general method for attaching a rigid label to nucleic acids in a nucleotide-independent manner has not been reported. RESULTS: We developed an approach for installing a nearly rigid nitroxide spin label, designated as R5c, at a specific site of the nucleic acid backbone in a nucleotide-independent manner. The method uses a post-synthesis approach to covalently attach the nitroxide moiety in a cyclic fashion to phosphorothioate groups introduced at two consecutive nucleotides of the target strand. R5c-labeled nucleic acids are capable of pairing with their respective complementary strands, and the cyclic nature of R5c attachment significantly reduced independence motions of the label with respect to the parent duplex, although it may cause distortion of the local environment at the site of labeling. R5c yields enhanced sensitivity to the collective motions of the duplex, as demonstrated by its capability to reveal changes in collective motions of the substrate recognition duplex of the 120-kDa Tetrahymena group I ribozyme, which elude detection by a flexible label. CONCLUSIONS: The cyclic R5c nitroxide can be efficiently attached to a target nucleic acid site using a post-synthetic coupling approach conducted under mild biochemical conditions, and serves as a viable label for experimental investigation of segmental motions in nucleic acids, including large folded RNAs.

9.
J Phys Chem B ; 116(22): 6387-96, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22574834

RESUMO

The behavior of the nitroxide spin labels 1-oxyl-4-bromo-2,2,5,5-tetramethylpyrroline (R5a) and 1-oxyl-2,2,5,5-tetramethylpyrroline (R5) attached at a phosphorothioate-substituted site in a DNA duplex is modulated by the DNA in a site- and stereospecific manner. A better understanding of the mechanisms of R5a/R5 sensing of the DNA microenvironment will enhance our capability to relate information from nitroxide spectra to sequence-dependent properties of DNA. Toward this goal, electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations were used to investigate R5 and R5a attached as R(p) and S(p) diastereomers at phosphorothioate (pS)C(7) of d(CTACTG(pS)C(7)Y(8)TTAG). d(CTAAAGCAGTAG) (Y = T or U). X-band continuous-wave EPR spectra revealed that the dT(8) to dU(8) change alters nanosecond rotational motions of R(p)-R5a but produces no detectable differences for S(p)-R5a, R(p)-R5, and S(p)-R5. MD simulations were able to qualitatively account for these spectral variations and provide a plausible physical basis for the R5/R5a behavior. The simulations also revealed a correlation between DNA backbone B(I)/B(II) conformations and R5/R5a rotational diffusion, thus suggesting a direct connection between DNA local backbone dynamics and EPR-detectable R5/R5a motion. These results advance our understanding of how a DNA microenvironment influences nitroxide motion and the observed EPR spectra. This may enable use of R5/R5a for a quantitative description of the sequence-dependent properties of large biologically relevant DNA molecules.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Óxidos de Nitrogênio/química , Espectroscopia de Ressonância de Spin Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA