Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Am Chem Soc ; 145(35): 19207-19217, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615605

RESUMO

Nanoscale heterostructures of covalent intermetallics should give birth to a wide range of interface-driven physical and chemical properties. Such a level of design however remains unattainable for most of these compounds, due to the difficulty to reach a crystalline order of covalent bonds at the moderate temperatures required for colloidal chemistry. Herein, we design heterostructured cobalt silicide nanoparticles to trigger magnetic and catalytic properties in silicon-based materials. Our strategy consists in controlling the diffusion of cobalt atoms into silicon nanoparticles, by reacting these particles in molten salts. By adjusting the temperature, we tune the conversion of the initial silicon particles toward homogeneous CoSi nanoparticles and core-shell nanoparticles made of a CoSi shell and a silicon-rich core. The increased interface-to-volume ratio of the CoSi component in the core-shell particles yields distinct properties compared to the bulk and homogeneous nanoparticles. First, the core-shell particles exhibit increased ferromagnetism, despite the bulk diamagnetic properties of cobalt monosilicide. Second, the core-shell nanoparticles act as efficient precatalysts for alkaline water oxidation, where the nanostructure is converted in situ into a layered cobalt silicon oxide/(oxy)hydroxide with high and stable oxygen evolution reaction (OER) electrocatalytic activity. This work demonstrates a route to design heterostructured nanocrystals of covalent intermetallic compounds and shows that these new structures exhibit very rich, yet poorly explored, interface-based physical properties and reactivity.

2.
Inorg Chem ; 62(5): 2073-2082, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36701311

RESUMO

Crystal structures can strongly deviate from bulk states when confined into nanodomains. These deviations may deeply affect properties and reactivity and then call for a close examination. In this work, we address the case where extended crystal defects spread through a whole solid and then yield an aperiodic structure and specific reactivity. We focus on iron boride, α-FeB, whose structure has not been elucidated yet, thus hindering the understanding of its properties. We synthesize the two known phases, α-FeB and ß-FeB, in molten salts at 600 and 1100 °C, respectively. The experimental X-ray diffraction (XRD) data cannot be satisfactorily accounted for by a periodic crystal structure. We then model the compound as a stochastic assembly of layers of two structure types. Refinement of the powder XRD pattern by considering the explicit scattering interference of the different layers allows quantitative evaluation of the size of these domains and of the stacking faults between them. We, therefore, demonstrate that α-FeB is an intergrowth of nanometer-thick slabs of two structure types, ß-FeB and CrB-type structures, in similar proportions. We finally discuss the implications of this novel structure on the reactivity of the material and its ability to perform insertion reactions by comparing the reactivities of α-FeB and ß-FeB as reagents in the synthesis of a model layered material: Fe2AlB2. Using synchrotron-based in situ X-ray diffraction, we elucidate the mechanisms of the formation of Fe2AlB2. We highlight the higher reactivity of the intergrowth α-FeB in agreement with structural relationships.

3.
Chem Soc Rev ; 51(11): 4828-4866, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35603716

RESUMO

The search for new materials is intimately linked to the development of synthesis methods. In the current urge for the sustainable synthesis of materials, taking inspiration from Nature's ways to process matter appears as a virtuous approach. In this review, we address the concept of geoinspiration for the design of new materials and the exploration of new synthesis pathways. In geoinspiration, materials scientists take inspiration from the key features of various geological systems and processes occurring in nature, to trigger the formation of artificial materials and nanomaterials. We discuss several case studies of materials and nanomaterials to highlight the basic geoinspiration concepts underlying some synthesis methods: syntheses in water and supercritical water, thermal shock syntheses, molten salt synthesis and high pressure synthesis. We show that the materials emerging from geoinspiration exhibit properties differing from materials obtained by other pathways, thus demonstrating that the field opens up avenues to new families of materials and nanomaterials. This review focuses on synthesis methodologies, by drawing connections between geosciences and materials chemistry, nanosciences, green chemistry, and environmental sciences.


Assuntos
Nanoestruturas , Água
4.
Angew Chem Int Ed Engl ; 62(49): e202310788, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37811682

RESUMO

The need of carbon sources for the chemical industry, alternative to fossil sources, has pointed to CO2 as a possible feedstock. While CO2 electroreduction (CO2 R) allows production of interesting organic compounds, it suffers from large carbon losses, mainly due to carbonate formation. This is why, quite recently, tandem CO2 R, a two-step process, with first CO2 R to CO using a solid oxide electrolysis cell followed by CO electroreduction (COR), has been considered, since no carbon is lost as carbonate in either step. Here we report a novel copper-based catalyst, silver-doped copper nitride, with record selectivity for formation of propanol (Faradaic efficiency: 45 %), an industrially relevant compound, from CO electroreduction in gas-fed flow cells. Selective propanol formation occurs at metallic copper atoms derived from copper nitride and is promoted by silver doping as shown experimentally and computationally. In addition, the selectivity for C2+ liquid products (Faradaic efficiency: 80 %) is among the highest reported so far. These findings open new perspectives regarding the design of catalysts for production of C3 compounds from CO2 .

5.
Angew Chem Int Ed Engl ; 62(26): e202303487, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042950

RESUMO

Mixed-anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4 Si2 O7 Cl2 . We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon-based connectors from a non-oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed-anion solids.


Assuntos
Nanoestruturas , Cloreto de Sódio/química , Ânions/química , Nanoestruturas/química , Zinco/química , Dióxido de Silício/química , Cloretos/química , Catálise , Eletroquímica/métodos
6.
Small ; 18(4): e2104091, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766719

RESUMO

Incorporating boride nanocrystals could significantly impact the mechanical properties of aluminum alloys. Molten salts synthesis offers opportunities to fabricate superhard boride nanoparticles, which can sustain the harsh conditions during the liquid-phase design of metallic nanocomposites. Here hafnium diboride-aluminum nanocomposites are unveiled from molten salt-derived HfB2 nanoparticles sequentially dispersed in aluminum by ultrasound treatment. The structure and size of the nanocrystals are retained in the final nanocomposites, supporting their high chemical stability. Semicoherent interfaces between the nanoparticles and the matrix are then evidenced by TEM, suggesting that the nanocrystals could promote heterogeneous nucleation of Al and then limit the Al grain size to ≈20 µm. Nanoindentation measurements reveal significant grain boundary strengthening and grain refinement effects. It is finally shown that HfB2 nanoparticles also enable a decrease in matrix grain size and an increase in the hardness of the AlSi7 Cu0.5 Mg0.3 alloy. These proof-of-concept materials are paving the way to light-weight Al matrix nanocomposites doped by molten-salt synthesized nanoparticles.

7.
Small ; 18(20): e2200414, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35426247

RESUMO

Thermal decomposition is a very efficient synthesis strategy to obtain nanosized metal oxides with controlled structures and properties. For the iron oxide nanoparticle synthesis, it allows an easy tuning of the nanoparticle's size, shape, and composition, which is often explained by the LaMer theory involving a clear separation between nucleation and growth steps. Here, the events before the nucleation of iron oxide nanocrystals are investigated by combining different complementary in situ characterization techniques. These characterizations are carried out not only on powdered iron stearate precursors but also on a preheated liquid reaction mixture. They reveal a new nucleation mechanism for the thermal decomposition method: instead of a homogeneous nucleation, the nucleation occurs within vesicle-like-nanoreactors confining the reactants. The different steps are: 1) the melting and coalescence of iron stearate particles, leading to "droplet-shaped nanostructures" acting as nanoreactors; 2) the formation of a hitherto unobserved iron stearate crystalline phase within the nucleation temperature range, simultaneously with stearate chains loss and Fe(III) to Fe(II) reduction; 3) the formation of iron oxide nuclei inside the nanoreactors, which are then ejected from them. This mechanism paves the way toward a better mastering of the metal oxide nanoparticles synthesis and the control of their properties.


Assuntos
Nanopartículas Metálicas , Óxidos , Meios de Cultura , Compostos Férricos/química , Ferro , Nanopartículas Metálicas/química , Óxidos/química , Estearatos
8.
Inorg Chem ; 60(7): 4252-4260, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33480696

RESUMO

Boron-rich solids exhibit specific crystal structures and unique properties, which are only very scarcely addressed in nanoparticles. In this work, we address the original inorganic structural chemistry and reactivity of boron-rich nanoparticles, by reporting the first occurrence of sodium carbaboride nanocrystals based on the NaB5C crystal structure. To design these sub-10 nm nano-objects, we use liquid-phase synthesis in molten salts at 900 °C. By combining a set of characterization tools including powder X-ray powder diffraction, transmission electron microscopy, solid-state nuclear magnetic resonance coupled to DFT modeling, and X-ray photoelectron spectroscopy, we demonstrate that these nanocrystals deviate from the ideal stoichiometry reported for the bulk compound. We suggest that the carbon and sodium contents compensate each other to ensure that the octahedral cluster-based framework is stabilized by fulfilling an electron counting rule. These nanocrystals encompass substituted octahedral covalent structural building units not reported in the related bulk compound. They then shed new light on the ability of nanoparticles to host wide solid solution ranges in covalent solids and then to yield new solids. We finally show that these nanocrystals are efficient single sources of boron and carbon to form a nanostructured boron carbide, thus paving the way to new nanostructured materials.

9.
Inorg Chem ; 59(20): 14983-14988, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33001644

RESUMO

Lithium borides have been synthesized exclusively through classical solid-state chemistry processes that lead to bulk materials. Indeed, due to the lack of reactivity of the solid boron precursors usually employed and to the high covalent connectivity in such solids, high temperatures and long reaction times are necessary to obtain lithium borides. These conditions result in extensive crystal growth. Here we present the synthesis of nanoparticles of a lithium boride bearing tunnel-like cavities templated by neutral Li2O species, which have been reported to be labile. To reach this goal, a liquid-phase synthesis in inorganic molten salts has been developed. The Li6B18(Li2O)x nanoparticles have been characterized by scanning and transmission electronic microscopy (SEM and TEM), X-ray diffraction (XRD), and Raman spectroscopy. We provide an in-depth structural characterization by using 1H, 7Li, and 11B solid-state nuclear magnetic resonance (NMR) coupled with DFT modeling to provide the first assignment of 7Li and 11B solid-state NMR signals in lithium borides. We then assess the nanoparticle morphology oriented along the direction of the cavities. This feature shows similarities with structurally related hexagonal tungsten bronzes and could therefore affect the electrochemical and ion exchange properties.

10.
Acc Chem Res ; 51(4): 930-939, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29533580

RESUMO

The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion, great promise. We will span methods of low temperature "chimie douce" aqueous synthesis coupled to microwave heating, sol-gel chemistry and processing coupled to solid state reactions, and then molten salt synthesis. These protocols pave the way to metastable low valence oxyhydroxides, vanadates, perovskite oxides, boron carbon nitrides, and metal borides, all obtained at the nanoscale with structural and morphological features differing from "usual" nanomaterials. These nano-objects show original properties, from sensing, thermoelectricity, charge and spin transports, photoluminescence, and catalysis, which require advanced characterization of surface states. We then identify future trends of synthetic methodologies that will merit further attention in this burgeoning field, by emphasizing the importance of unveiling reaction mechanisms and coupling experiments with modeling.

11.
Chemistry ; 25(49): 11481-11485, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31206813

RESUMO

N-Heterocyclic carbene (NHC)-stabilized copper nanoparticles (NPs) were synthesized from an NHC-borane adduct and mesitylcopper(I) under thermal conditions (refluxing toluene for 2.5 h). NPs with a size distribution of 11.6±1.8 nm were obtained. The interaction between Cu NPs and NHC ligands was probed by X-ray photoelectron spectroscopy, which showed covalent binding of the NHC to the surface of the NPs. Mechanistic studies suggested that NHC-borane plays two roles: contributing to the reduction of [CuMes]2 to release Cu0 species and providing NHC ligands to stabilize the copper NPs.

13.
Inorg Chem ; 58(16): 10822-10828, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31380642

RESUMO

The inorganic chemistry of the Na-Si system at high pressure is fascinating, with a large number of interesting compounds accessible in the industrial pressure scale, below 10 GPa. In particular, Na4Si4 is stable in this whole pressure range and thus plays an important role in understanding the thermodynamics and kinetics underlying materials synthesis at high pressures and high temperatures. In the present work, the melting curve of the Zintl compound Na4Si4 made of Na+ and Si44- tetrahedral cluster ions is studied at high pressures up to 5 GPa, by using in situ electrical measurements. During melting, the insulating Na4Si4 solid transforms into an ionic conductive liquid that can be probed through the conductance of the whole high-pressure cell, i.e., the system constituted of the sample, the heater, and the high-pressure assembly. Na4Si4 melts congruently in the studied pressure range, and its melting point increases with pressure with a positive slope dTm/dp of 20(4) K/GPa.

14.
J Am Chem Soc ; 139(18): 6314-6320, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28418247

RESUMO

Achieving a high rate of ionic transport through porous membranes and ionic channels is important in numerous applications ranging from energy storage to water desalination, but it still remains a challenge. Herein we show that ions can quickly pass through interlayer spaces in hydrated boron nitride (BN) membranes. Measurements of surface-charge governed ionic currents between BN nanosheets in a variety of salt solutions (KCl, NaCl and CaCl2) at low salt concentrations (<10-4 M) showed several orders of magnitude higher ionic conductivity compared to that of the bulk solution. Moreover, due to the outstanding chemical and thermal stability of BN, the ionic conduits remain fully functional at temperatures up to 90 °C. The BN conduits can operate in acidic and basic environments and do not degrade after immersing in solutions with extreme pH (pH ∼ 0 or 14) for 1 week. Those excellent properties make the BN ionic conduits attractive for applications in nanofluidic devices and membrane separation.

15.
Small ; 13(20)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371306

RESUMO

A basic understanding of the driving forces for the formation of multiligand coronas or self-assembled monolayers over metal nanoparticles is mandatory to control and predict the properties of ligand-protected nanoparticles. Herein, 1 H nuclear magnetic resonance experiments and advanced density functional theory (DFT) modeling are combined to highlight the key parameters defining the efficiency of ligand exchange on dispersed gold nanoparticles. The compositions of the surface and of the liquid reaction medium are quantitatively correlated for bifunctional gold nanoparticles protected by a range of competing thiols, including an alkylthiol, arylthiols of varying chain length, thiols functionalized by ethyleneglycol units, and amide groups. These partitions are used to build scales that quantify the ability of a ligand to exchange dodecanethiol. Such scales can be used to target a specific surface composition by choosing the right exchange conditions (ligand ratio, concentrations, and particle size). In the specific case of arylthiols, the exchange ability scale is exploited with the help of DFT modeling to unveil the roles of intermolecular forces and entropic effects in driving ligand exchange. It is finally suggested that similar considerations may apply to other ligands and to direct biligand synthesis.

16.
Inorg Chem ; 56(15): 9225-9234, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28737907

RESUMO

Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H2), and a mixture of H2 and carbon dioxide (CO2) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H2 activates CoB for the catalysis of CO2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.

17.
Faraday Discuss ; 191: 511-525, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415756

RESUMO

Herein we highlight for the first time the ability to tune the stoichiometry of metal boride nanocrystals through nanoparticle synthesis in thermally stable inorganic molten salts. Two metal-boron systems are chosen as case studies: boron-poor nickel borides and boron-rich yttrium borides. We show that NiB, Ni4B3, Ni2B, Ni3B, and YB6 particles can be obtained as crystalline phases with good selectivity. Anisotropic crystallization is observed in two cases: the first boron-rich YB4 nanorods are reported, while boron-poor NiB nanoparticles show a peculiar crystal habit, as they are obtained as spheres with uniaxial defects related to the crystal structure. Crystallization mechanisms are proposed to account for the appearance of these two kinds of anisotropy at the nanoscale.

18.
Inorg Chem ; 55(21): 11502-11512, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27731982

RESUMO

An aqueous synthetic route at 95 °C is developed to reach selectively three scarcely reported vanadium oxyhydroxides. Häggite V2O3(OH)2, Duttonite VO(OH)2, and Gain's hydrate V2O4(H2O)2 are obtained as nanowires, nanorods, and nanoribbons, with sizes 1 order of magnitude smaller than previously reported. X-ray absorption spectroscopy provides evidence that vanadium in these phases is V+IV. Combined with FTIR, XRD, and electron microscopy, it yields the first insights into formation mechanisms, especially for Häggite and Gain's hydrate. This study opens the way for further investigations of the properties of novel V+IV (oxyhydr)oxides nanostructures.

19.
Nanoscale ; 16(16): 7958-7964, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38564304

RESUMO

A current challenge in silicon chemistry is to perform liquid-phase synthesis of silicon nanoparticles, which would permit the use of colloidal synthesis techniques to control size and shape. Herein we show how silicon nanoparticles were synthesized at ambient temperature and pressure in organic solvents through a redox reaction. Specifically, a hexacoordinated silicon complex, bis(N,N'-diisopropylbutylamidinato)dichlorosilane, was reduced by a silicon Zintl phase, sodium silicide (Na4Si4). The resulting silicon nanoparticles were crystalline with sizes tuned from a median particle diameter of 15 nm to 45 nm depending on the solvent. Photoluminescence measurements performed on colloidal suspensions of the 45 nm diameter silicon nanoparticles indicated a blue emission signal, attributed to the partial oxidation of the Si nanocrystals or to the presence of nitrogen impurities.

20.
Chemosphere ; 341: 140129, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690550

RESUMO

The rapid and efficient mineralization of the chemotherapeutic drug busulfan (BSF) as the target pollutant has been investigated for the first time by three different heterogeneous EF systems that were constructed to ensure the continuous electro-generation of H2O2 and •OH consisting of: i) a multifunctional carbon felt (CF) based cathode composed of reduced graphene oxide (rGO), iron oxide nanoparticles and carbon black (CB) (rGO-Fe3O4/CB@CF), ii) rGO modified cathode (rGO/CB@CF) and rGO supported Fe3O4 (rGO-Fe3O4) catalyst and iii) rGO modified cathode (rGO/CB@CF) and multi walled carbon nanotube supported Fe3O4 (MWCNT-Fe3O4) catalyst. The effects of main variables, including the catalyst amount, applied current and initial pH were investigated. Based on the results, H2O2 was produced by oxygen reduction reaction (ORR) on the liquid-solid interface of both fabricated cathodes. •OH was generated by the reaction of H2O2 with the active site of ≡FeII on the surface of the multifunctional cathode and heterogeneous EF catalysts. Utilizing carbon materials with high conductivity, the redox cycling between ≡FeII and ≡FeIII was effectively facilitated and therefore promoted the performance of the process. The results demonstrated almost complete mineralization of BSF through the heterogeneous systems over a wide applicable pH range. According to the reusability and stability tests, multifunctional cathode exhibited outstanding performance after five consecutive cycles which is promising for the efficient mineralization of refractory organic pollutants. Moreover, intermediates products of BSF oxidation were identified and a plausible oxidation pathway was proposed. Therefore, this study demonstrates efficient and stable cathodes and catalysts for the efficient treatment of an anticancer active substance.


Assuntos
Poluentes Ambientais , Nanocompostos , Bussulfano , Compostos Férricos , Peróxido de Hidrogênio , Condutividade Elétrica , Fuligem , Compostos Ferrosos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA