Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Invest Dermatol ; 135(3): 796-806, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25371970

RESUMO

Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Homeostase/fisiologia , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo , Sódio/metabolismo , Água/metabolismo , Animais , Comunicação Celular/fisiologia , Células Cultivadas , Cicatriz/prevenção & controle , Técnicas de Cocultura , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/antagonistas & inibidores , Dinoprostona/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Modelos Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coelhos , Pele/efeitos dos fármacos , Pele/patologia
2.
Development ; 130(4): 683-92, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12505999

RESUMO

Fertilization increases both cytosolic Ca(2+) concentration and oxygen consumption in the egg but the relationship between these two phenomena remains largely obscure. We have measured mitochondrial oxygen consumption and the mitochondrial NADH concentration on single ascidian eggs and found that they increase in phase with each series of meiotic Ca(2+) waves emitted by two pacemakers (PM1 and PM2). Oxygen consumption also increases in response to Ins(1,4,5)P(3)-induced Ca(2+) transients. Using mitochondrial inhibitors we show that active mitochondria sequester cytosolic Ca(2+) during sperm-triggered Ca(2+) waves and that they are strictly necessary for triggering and sustaining the activity of the meiotic Ca(2+) wave pacemaker PM2. Strikingly, the activity of the Ca(2+) wave pacemaker PM2 can be restored or stimulated by flash photolysis of caged ATP. Taken together our observations provide the first evidence that, in addition to buffering cytosolic Ca(2+), the egg's mitochondria are stimulated by Ins(1,4,5)P(3)-mediated Ca(2+) signals. In turn, mitochondrial ATP production is required to sustain the activity of the meiotic Ca(2+) wave pacemaker PM2.


Assuntos
Sinalização do Cálcio , Fertilização , Meiose , Mitocôndrias/metabolismo , Urocordados/genética , Urocordados/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Relógios Biológicos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Polaridade Celular , Respiração Celular , Cianetos/farmacologia , Citosol/metabolismo , Eletrofisiologia/métodos , Embrião não Mamífero/metabolismo , Feminino , Masculino , Mitocôndrias/efeitos dos fármacos , NAD/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Urocordados/embriologia , Zigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA