Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474961

RESUMO

This study investigated the impact of auditory stimuli on muscular activation patterns using wearable surface electromyography (EMG) sensors. Employing four key muscles (Sternocleidomastoid Muscle (SCM), Cervical Erector Muscle (CEM), Quadricep Muscles (QMs), and Tibialis Muscle (TM)) and time domain features, we differentiated the effects of four interventions: silence, music, positive reinforcement, and negative reinforcement. The results demonstrated distinct muscle responses to the interventions, with the SCM and CEM being the most sensitive to changes and the TM being the most active and stimulus dependent. Post hoc analyses revealed significant intervention-specific activations in the CEM and TM for specific time points and intervention pairs, suggesting dynamic modulation and time-dependent integration. Multi-feature analysis identified both statistical and Hjorth features as potent discriminators, reflecting diverse adaptations in muscle recruitment, activation intensity, control, and signal dynamics. These features hold promise as potential biomarkers for monitoring muscle function in various clinical and research applications. Finally, muscle-specific Random Forest classification achieved the highest accuracy and Area Under the ROC Curve for the TM, indicating its potential for differentiating interventions with high precision. This study paves the way for personalized neuroadaptive interventions in rehabilitation, sports science, ergonomics, and healthcare by exploiting the diverse and dynamic landscape of muscle responses to auditory stimuli.


Assuntos
Contração Muscular , Dispositivos Eletrônicos Vestíveis , Contração Muscular/fisiologia , Intervenção Psicossocial , Eletromiografia , Músculos do Pescoço/fisiologia
2.
Sensors (Basel) ; 22(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35590866

RESUMO

The most traditional sites for electrodermal activity (EDA) data collection, palmar locations such as fingers or palms, are not usually recommended for ambulatory monitoring given that subjects have to use their hands regularly during their daily activities, and therefore, alternative sites are often sought for EDA data collection. In this study, we collected EDA signals (n = 23 subjects, 19 male) from four measurement sites (forehead, back of neck, finger, and inner edge of foot) during cognitive stress and induction of mild motion artifacts by walking and one-handed weightlifting. Furthermore, we computed several EDA indices from the EDA signals obtained from different sites and evaluated their efficiency to classify cognitive stress from the baseline state. We found a high within-subject correlation between the EDA signals obtained from the finger and the feet. Consistently high correlation was also found between the finger and the foot EDA in both the phasic and tonic components. Statistically significant differences were obtained between the baseline and cognitive stress stage only for the EDA indices computed from the finger and the foot EDA. Moreover, the receiver operating characteristic curve for cognitive stress detection showed a higher area-under-the-curve for the EDA indices computed from the finger and foot EDA. We also evaluated the robustness of the different body sites against motion artifacts and found that the foot EDA location was the best alternative to other sites.


Assuntos
Artefatos , Resposta Galvânica da Pele , Coleta de Dados , , Humanos , Masculino , Movimento (Física)
3.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433449

RESUMO

Bio-signals are being increasingly used for the assessment of pathophysiological conditions including pain, stress, fatigue, and anxiety. For some approaches, a single signal is not sufficient to provide a comprehensive diagnosis; however, there is a growing consensus that multimodal approaches allow higher sensitivity and specificity. For instance, in visceral pain subjects, the autonomic activation can be inferred using electrodermal activity (EDA) and heart rate variability derived from the electrocardiogram (ECG), but including the muscle activation detected from the surface electromyogram (sEMG) can better differentiate the disease that causes the pain. There is no wearable device commercially capable of collecting these three signals simultaneously. This paper presents the validation of a novel multimodal low profile wearable data acquisition device for the simultaneous collection of EDA, ECG, and sEMG signals. The device was validated by comparing its performance to laboratory-scale reference devices. N = 20 healthy subjects were recruited to participate in a four-stage study that exposed them to an array of cognitive, orthostatic, and muscular stimuli, ensuring the device is sensitive to a range of stressors. Time and frequency domain analyses for all three signals showed significant similarities between our device and the reference devices. Correlation of sEMG metrics ranged from 0.81 to 0.95 and EDA/ECG metrics showed few instances of significant difference in trends between our device and the references. With only minor observed differences, we demonstrated the ability of our device to collect EDA, sEMG, and ECG signals. This device will enable future practical and impactful advances in the field of chronic pain and stress measurement and can confidently be implemented in related studies.


Assuntos
Resposta Galvânica da Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Eletromiografia , Eletrocardiografia , Dor
4.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R186-R196, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133246

RESUMO

An objective measure of pain remains an unmet need of people with chronic pain, estimated to be 1/3 of the adult population in the United States. The current gold standard to quantify pain is highly subjective, based upon self-reporting with numerical or visual analog scale (VAS). This subjectivity complicates pain management and exacerbates the epidemic of opioid abuse. We have tested classification and regression machine learning models to objectively estimate pain sensation in healthy subjects using electrodermal activity (EDA). Twenty-three volunteers underwent pain stimulation using thermal grills. Three different "pain stimulation intensities" were induced for each subject, who reported the "pain sensation" right after each stimulus using a VAS (0-10). EDA data were collected throughout the experiment. For machine learning, we computed validated features of EDA based on time-domain decomposition, spectral analysis, and differential features. Models for estimation of pain stimulation intensity and pain sensation achieved maximum macroaveraged geometric mean scores of 69.7% and 69.2%, respectively, when three classes were considered ("No," "Low," and "High"). Regression of levels of stimulation intensity and pain sensation achieved R2 values of 0.357 and 0.47, respectively. Overall, the high variance and inconsistency of VAS scores led to lower performance of pain sensation classification, but regression was better for pain sensation than stimulation intensity. Our results provide that three levels of pain can be quantified with good accuracy and physiological evidence that sympathetic responses recorded by EDA are more correlated to the applied stimuli's intensity than to the pain sensation reported by the subject.


Assuntos
Eletrodiagnóstico , Aprendizado de Máquina , Medição da Dor , Percepção da Dor , Limiar da Dor , Dor/diagnóstico , Processamento de Sinais Assistido por Computador , Pele/inervação , Sistema Nervoso Simpático/fisiopatologia , Adulto , Estudos de Viabilidade , Feminino , Resposta Galvânica da Pele , Temperatura Alta , Humanos , Masculino , Dor/etiologia , Dor/fisiopatologia , Dor/psicologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Adulto Jovem
5.
Sensors (Basel) ; 21(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201268

RESUMO

The subjectiveness of pain can lead to inaccurate prescribing of pain medication, which can exacerbate drug addiction and overdose. Given that pain is often experienced in patients' homes, there is an urgent need for ambulatory devices that can quantify pain in real-time. We implemented three time- and frequency-domain electrodermal activity (EDA) indices in our smartphone application that collects EDA signals using a wrist-worn device. We then evaluated our computational algorithms using thermal grill data from ten subjects. The thermal grill delivered a level of pain that was calibrated for each subject to be 8 out of 10 on a visual analog scale (VAS). Furthermore, we simulated the real-time processing of the smartphone application using a dataset pre-collected from another group of fifteen subjects who underwent pain stimulation using electrical pulses, which elicited a VAS pain score level 7 out of 10. All EDA features showed significant difference between painless and pain segments, termed for the 5-s segments before and after each pain stimulus. Random forest showed the highest accuracy in detecting pain, 81.5%, with 78.9% sensitivity and 84.2% specificity with leave-one-subject-out cross-validation approach. Our results show the potential of a smartphone application to provide near real-time objective pain detection.


Assuntos
Dor Aguda , Punho , Resposta Galvânica da Pele , Humanos , Smartphone , Articulação do Punho
6.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R366-R375, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726157

RESUMO

We have tested the feasibility of thermal grills, a harmless method to induce pain. The thermal grills consist of interlaced tubes that are set at cool or warm temperatures, creating a painful "illusion" (no tissue injury is caused) in the brain when the cool and warm stimuli are presented collectively. Advancement in objective pain assessment research is limited because the gold standard, the self-reporting pain scale, is highly subjective and only works for alert and cooperative patients. However, the main difficulty for pain studies is the potential harm caused to participants. We have recruited 23 subjects in whom we induced electric pulses and thermal grill (TG) stimulation. The TG effectively induced three different levels of pain, as evidenced by the visual analog scale (VAS) provided by the subjects after each stimulus. Furthermore, objective physiological measurements based on electrodermal activity showed a significant increase in levels as stimulation level increased. We found that VAS was highly correlated with the TG stimulation level. The TG stimulation safely elicited pain levels up to 9 out of 10. The TG stimulation allows for extending studies of pain to ranges of pain in which other stimuli are harmful.


Assuntos
Resposta Galvânica da Pele/fisiologia , Temperatura Alta , Limiar da Dor/fisiologia , Dor/fisiopatologia , Sensação Térmica/fisiologia , Adulto , Temperatura Baixa , Feminino , Voluntários Saudáveis , Humanos , Medição da Dor/métodos
7.
Sensors (Basel) ; 20(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952141

RESUMO

The electrodermal activity (EDA) signal is an electrical manifestation of the sympathetic innervation of the sweat glands. EDA has a history in psychophysiological (including emotional or cognitive stress) research since 1879, but it was not until recent years that researchers began using EDA for pathophysiological applications like the assessment of fatigue, pain, sleepiness, exercise recovery, diagnosis of epilepsy, neuropathies, depression, and so forth. The advent of new devices and applications for EDA has increased the development of novel signal processing techniques, creating a growing pool of measures derived mathematically from the EDA. For many years, simply computing the mean of EDA values over a period was used to assess arousal. Much later, researchers found that EDA contains information not only in the slow changes (tonic component) that the mean value represents, but also in the rapid or phasic changes of the signal. The techniques that have ensued have intended to provide a more sophisticated analysis of EDA, beyond the traditional tonic/phasic decomposition of the signal. With many researchers from the social sciences, engineering, medicine, and other areas recently working with EDA, it is timely to summarize and review the recent developments and provide an updated and synthesized framework for all researchers interested in incorporating EDA into their research.

8.
Sensors (Basel) ; 18(6)2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861438

RESUMO

The detection of intrathoracic volume retention could be crucial to the early detection of decompensated heart failure (HF). Transthoracic Bioimpedance (TBI) measurement is an indirect, promising approach to assessing intrathoracic fluid volume. Gel-based adhesive electrodes can produce skin irritation, as the patient needs to place them daily in the same spots. Textile electrodes can reduce skin irritation; however, they inconveniently require wetting before each use and provide poor adherence to the skin. Previously, we developed waterproof reusable dry carbon black polydimethylsiloxane (CB/PDMS) electrodes that exhibited a good response to motion artifacts. We examined whether these CB/PDMS electrodes were suitable sensing components to be embedded into a monitoring vest for measuring TBI and the electrocardiogram (ECG). We recruited N = 20 subjects to collect TBI and ECG data. The TBI parameters were different between the various types of electrodes. Inter-subject variability for copper-mesh CB/PDMS electrodes and Ag/AgCl electrodes was lower compared to textile electrodes, and the intra-subject variability was similar between the copper-mesh CB/PDMS and Ag/AgCl. We concluded that the copper mesh CB/PDMS (CM/CB/PDMS) electrodes are a suitable alternative for textile electrodes for TBI measurements, but with the benefit of better skin adherence and without the requirement of wetting the electrodes, which can often be forgotten by the stressed HF subjects.

9.
Hum Factors ; 60(7): 1035-1047, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29906207

RESUMO

OBJECTIVE: The aim was to determine if indices of the autonomic nervous system (ANS), derived from the electrodermal activity (EDA) and electrocardiogram (ECG), could be used to detect deterioration in human cognitive performance on healthy participants during 24-hour sleep deprivation. BACKGROUND: The ANS is highly sensitive to sleep deprivation. METHODS: Twenty-five participants performed a desktop-computer-based version of the psychomotor vigilance task (PVT) every 2 hours. Simultaneously with reaction time (RT) and false starts from PVT, we measured EDA and ECG. We derived heart rate variability (HRV) measures from ECG recordings to assess dynamics of the ANS. Based on RT values, average reaction time (avRT), minor lapses (RT > 500 ms), and major lapses (RT > 1 s) were computed as indices of performance, along with the total number of false starts. RESULTS: Performance measurement results were consistent with the literature. The skin conductance level, the power spectral index, and the high-frequency components of HRV were not significantly correlated to the indices of performance. The nonspecific skin conductance responses, the time-varying index of EDA (TVSymp), and normalized low-frequency components of HRV were significantly correlated to indices of performance ( p < 0.05). TVSymp exhibited the highest correlation to avRT (-0.92), major lapses (-0.85), and minor lapses (-0.83). CONCLUSION: We conclude that indices that account for high-frequency dynamics in the EDA, specifically the time-varying approach, constitute a valuable tool for understanding the changes in the autonomic nervous system. APPLICATION: This can be used to detect the adverse effects of prolonged wakefulness on human performance.


Assuntos
Atenção/fisiologia , Sistema Nervoso Autônomo/fisiologia , Resposta Galvânica da Pele/fisiologia , Frequência Cardíaca/fisiologia , Desempenho Psicomotor/fisiologia , Vigília/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R582-91, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440716

RESUMO

Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time-varying spectral amplitudes in the frequency band 0.08-0.24 Hz were used as the index of sympathetic tone, termed TVSymp. TVSymp was found to be overall the most sensitive to the stimuli, as evidenced by a low coefficient of variation (0.54), and higher consistency (intra-class correlation, 0.96) and sensitivity (Youden's index > 0.75), area under the receiver operating characteristic (ROC) curve (>0.8, accuracy > 0.88) compared with time-domain and time-invariant spectral indices, including heart rate variability.


Assuntos
Nível de Alerta/fisiologia , Resposta Galvânica da Pele/fisiologia , Pele/inervação , Estresse Fisiológico/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Técnicas de Diagnóstico Neurológico , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-38801681

RESUMO

The continuous detection of emotional states has many applications in mental health, marketing, human-computer interaction, and assistive robotics. Electrodermal activity (EDA), a signal modulated by sympathetic nervous system activity, provides continuous insight into emotional states. However, EDA possesses intricate nonstationary and nonlinear characteristics, making the extraction of emotion-relevant information challenging. We propose a novel graph signal processing (GSP) approach to model EDA signals as graphical networks, termed EDA-graph. The GSP leverages graph theory concepts to capture complex relationships in time-series data. To test the usefulness of EDA-graphs to detect emotions, we processed EDA recordings from the CASE emotion dataset using GSP by quantizing and linking values based on the Euclidean distance between the nearest neighbors. From these EDA-graphs, we computed the features of graph analysis, including total load centrality (TLC), total harmonic centrality (THC), number of cliques (GNC), diameter, and graph radius, and compared those features with features obtained using traditional EDA processing techniques. EDA-graph features encompassing TLC, THC, GNC, diameter, and radius demonstrated significant differences (p<0.05) between five emotional states (Neutral, Amused, Bored, Relaxed, and Scared). Using machine learning models for classifying emotional states evaluated using leave-one-subject-out cross-validation, we achieved a five-class F1 score of up to 0.68.

12.
Bioengineering (Basel) ; 11(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534565

RESUMO

This paper describes the analysis of electrodermal activity (EDA) in the context of students' scholastic activity. Taking a multidisciplinary, citizen science and maker-centric approach, low-cost, bespoken wearables, such as a mini weather station and biometric wristband, were built. To investigate both physical health as well as stress, the instruments were first validated against research grade devices. Following this, a research experiment was created and conducted in the context of students' scholastic activity. Data from this experiment were used to train machine learning models, which were then applied to interpret the relationships between the environment, health, and stress. It is hoped that analyses of EDA data will further strengthen the emerging model describing the intersections between local microclimate and physiological and neurological stress. The results suggest that temperature and air quality play an important role in students' physiological well-being, thus demonstrating the feasibility of understanding the extent of the effects of various microclimatic factors. This highlights the importance of thermal comfort and air ventilation in real-life applications to improve students' well-being. We envision our work making a significant impact by showcasing the effectiveness and feasibility of inexpensive, self-designed wearable devices for tracking microclimate and electrodermal activity (EDA). The affordability of these wearables holds promising implications for scalability and encourages crowd-sourced citizen science in the relatively unexplored domain of microclimate's influence on well-being. Embracing citizen science can then democratize learning and expedite rapid research advancements.

13.
J Autism Dev Disord ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393437

RESUMO

PURPOSE: Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are conditions that similarly alter cognitive functioning ability and challenge the social interaction, attention, and communication skills of affected individuals. Yet these are distinct neurological conditions that can exhibit diverse characteristics which require different management strategies. It is desirable to develop tools to assist with early distinction so that appropriate early interventions and support may be tailored to an individual's specific requirements. The current diagnostic procedures for ASD and ADHD require a multidisciplinary approach and can be lengthy. This study investigated the potential of electroretinogram (ERG), an eye test measuring retinal responses to light, for rapid screening of ASD and ADHD. METHODS: Previous studies identified differences in ERG amplitude between ASD and ADHD, but this study explored time-frequency analysis (TFS) to capture dynamic changes in the signal. ERG data from 286 subjects (146 control, 94 ASD, 46 ADHD) was analyzed using two TFS techniques. RESULTS: Key features were selected, and machine learning models were trained to classify individuals based on their ERG response. The best model achieved 70% overall accuracy in distinguishing control, ASD, and ADHD groups. CONCLUSION: The ERG to the stronger flash strength provided better separation and the high frequency dynamics (80-300 Hz) were more informative features than lower frequency components. To further improve classification a greater number of different flash strengths may be required along with a discrimination comparison to participants who meet both ASD and ADHD classifications and carry both diagnoses.

14.
Neural Netw ; 165: 562-595, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364469

RESUMO

Data visualization is critical to unraveling hidden information from complex and high-dimensional data. Interpretable visualization methods are critical, especially in the biology and medical fields, however, there are limited effective visualization methods for large genetic data. Current visualization methods are limited to lower-dimensional data and their performance suffers if there is missing data. In this study, we propose a literature-based visualization method to reduce high-dimensional data without compromising the dynamics of the single nucleotide polymorphisms (SNP) and textual interpretability. Our method is innovative because it is shown to (1) preserves both global and local structures of SNP while reducing the dimension of the data using literature text representations, and (2) enables interpretable visualizations using textual information. For performance evaluations, we examined the proposed approach to classify various classification categories including race, myocardial infarction event age groups, and sex using several machine learning models on the literature-derived SNP data. We used visualization approaches to examine clustering of data as well as quantitative performance metrics for the classification of the risk factors examined above. Our method outperformed all popular dimensionality reduction and visualization methods for both classification and visualization, and it is robust against missing and higher-dimensional data. Moreover, we found it feasible to incorporate both genetic and other risk information obtained from literature with our method.


Assuntos
Visualização de Dados , Infarto do Miocárdio , Humanos , Redes Neurais de Computação , Aprendizado de Máquina , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética
15.
Animals (Basel) ; 13(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36670768

RESUMO

The continuous monitoring of stress, pain, and discomfort is key to providing a good quality of life for horses. The available tools based on observation are subjective and do not allow continuous monitoring. Given the link between emotions and sympathetic autonomic arousal, heart rate and heart rate variability are widely used for the non-invasive assessment of stress and pain in humans and horses. However, recent advances in pain and stress monitoring are increasingly using electrodermal activity (EDA), as it is a more sensitive and specific measure of sympathetic arousal than heart rate variability. In this study, for the first time, we have collected EDA signals from horses and tested the feasibility of the technique for the assessment of sympathetic arousal. Fifteen horses (six geldings, nine mares, aged 13.11 ± 5.4 years) underwent a long-lasting stimulus (Feeding test) and a short-lasting stimulus (umbrella Startle test) to elicit sympathetic arousal. The protocol was approved by the University of Connecticut. We found that EDA was sensitive to both stimuli. Our results show that EDA can capture sympathetic activation in horses and is a promising tool for non-invasive continuous monitoring of stress, pain, and discomfort in horses.

16.
Behav Sci (Basel) ; 13(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37753985

RESUMO

Sleep deprivation, a widespread phenomenon that affects one-third of normal American adults, induces adverse changes in physical and cognitive performance, which in turn increases the occurrence of accidents. Sleep deprivation is known to increase resting blood pressure and decrease muscle sympathetic nerve activity. Monitoring changes in the interplay between the central and autonomic sympathetic nervous system can be a potential indicator of human's readiness to perform tasks that involve a certain level of cognitive load (e.g., driving). The electroencephalogram (EEG) is the standard to assess the brain's activity. The electrodermal activity (EDA) is a reflection of the general state of arousal regulated by the activation of the sympathetic nervous system through sweat gland stimulation. In this work, we calculated the mutual information between EDA and EEG recordings in order to consider linear and non-linear interactions and provide an insight of the relationship between brain activity and peripheral autonomic sympathetic activity. We analyzed EEG and EDA data from ten participants performing four cognitive tasks every two hours during 24 h (12 trials). We decomposed EEG data into delta, theta, alpha, beta, and gamma spectral components, and EDA into tonic and phasic components. The results demonstrate high values of mutual information between the EDA and delta component of EEG, mainly in working memory tasks. Additionally, we found an increase in the theta component of EEG in the presence of fatigue caused by sleep deprivation, the alpha component in tasks demanding inhibition and attention, and the delta component in working memory tasks. In terms of the location of brain activity, most of the tasks report high mutual information in frontal regions in the initial trials, with a trend to decrease and become uniform for all the nine analyzed EEG channels as a consequence of the sleep deprivation effect. Our results evidence the interplay between central and sympathetic nervous activity and can be used to mitigate the consequences of sleep deprivation.

17.
IEEE J Biomed Health Inform ; 27(9): 4250-4260, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399159

RESUMO

The current method for assessing pain in clinical practice is subjective and relies on self-reported scales. An objective and accurate method of pain assessment is needed for physicians to prescribe the proper medication dosage, which could reduce addiction to opioids. Hence, many works have used electrodermal activity (EDA) as a suitable signal for detecting pain. Previous studies have used machine learning and deep learning to detect pain responses, but none have used a sequence-to-sequence deep learning approach to continuously detect acute pain from EDA signals, as well as accurate detection of pain onset. In this study, we evaluated deep learning models including 1-dimensional convolutional neural networks (1D-CNN), long short-term memory networks (LSTM), and three hybrid CNN-LSTM architectures for continuous pain detection using phasic EDA features. We used a database consisting of 36 healthy volunteers who underwent pain stimuli induced by a thermal grill. We extracted the phasic component, phasic drivers, and time-frequency spectrum of the phasic EDA (TFS-phEDA), which was found to be the most discerning physiomarker. The best model was a parallel hybrid architecture of a temporal convolutional neural network and a stacked bi-directional and uni-directional LSTM, which obtained a F1-score of 77.8% and was able to correctly detect pain in 15-second signals. The model was evaluated using 37 independent subjects from the BioVid Heat Pain Database and outperformed other approaches in recognizing higher pain levels compared to baseline with an accuracy of 91.5%. The results show the feasibility of continuous pain detection using deep learning and EDA.


Assuntos
Dor Aguda , Aprendizado Profundo , Humanos , Resposta Galvânica da Pele , Redes Neurais de Computação , Aprendizado de Máquina
18.
Bioengineering (Basel) ; 10(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37370639

RESUMO

BACKGROUND: The electroretinogram is a clinical test used to assess the function of the photoreceptors and retinal circuits of various cells in the eye, with the recorded waveform being the result of the summated response of neural generators across the retina. METHODS: The present investigation involved an analysis of the electroretinogram waveform in both the time and time-frequency domains through the utilization of the discrete wavelet transform and continuous wavelet transform techniques. The primary aim of this study was to monitor and evaluate the effects of treatment in a New Zealand rabbit model of endophthalmitis via electroretinogram waveform analysis and to compare these with normal human electroretinograms. RESULTS: The wavelet scalograms were analyzed using various mother wavelets, including the Daubechies, Ricker, Wavelet Biorthogonal 3.1 (bior3.1), Morlet, Haar, and Gaussian wavelets. Distinctive variances were identified in the wavelet scalograms between rabbit and human electroretinograms. The wavelet scalograms in the rabbit model of endophthalmitis showed recovery with treatment in parallel with the time-domain features. CONCLUSIONS: The study compared adult, child, and rabbit electroretinogram responses using DWT and CWT, finding that adult signals had higher power than child signals, and that rabbit signals showed differences in the a-wave and b-wave depending on the type of response tested, while the Haar wavelet was found to be superior in visualizing frequency components in electrophysiological signals for following the treatment of endophthalmitis and may give additional outcome measures for the management of retinal disease.

19.
Comput Biol Med ; 155: 106695, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805230

RESUMO

Dental pain invokes the sympathetic nervous system, which can be measured by electrodermal activity (EDA). In the dental clinic, accurate quantification of pain is needed because it could enable optimized drug-dose treatments, thereby potentially reducing drug addiction. However, a confounding factor is that during pain there is also lingering residual stress, hence, both contribute to the EDA response. Therefore, we investigated whether EDA can differentiate stress from pain during dental examination. The use of electrical pulp test (EPT) is an ideal approach to tease out the dynamics of stress and mimic pain with lingering residual stress. Once the electrical sensation is felt and reaches a critical current threshold, the subject removes the probe from their tooth, hence, this stage of data represents largely EPT stimulus and the residual stress-induced EDA response is smaller. EPT was performed on necrotic and vital teeth in fifty-one subjects. We defined four different data groups of reactions based on each individual's EPT intensity level expectation based on the visual analog scale (VAS) of their baseline trial, as follows: mild stress, mild stress + EPT, strong stress, and strong stress + EPT. EDA-derived features exhibited significant difference between residual lingering stress + EPT groups and stress groups. We obtained 84.6% accuracy with 76.2% sensitivity and 86.8% specificity with multilayer perceptron in differentiating between pure-stress groups vs. stress + EPT groups. Moreover, EPT induced much greater EDA amplitude and faster response than stress. Our finding suggests that our machine learning approach can discriminate between stress and EPT stimulation in EDA signals.


Assuntos
Resposta Galvânica da Pele , Dor , Humanos , Clínicas Odontológicas , Sistema Nervoso Simpático/fisiologia , Aprendizado de Máquina
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2475-2478, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085748

RESUMO

Appropriate prescription of pain medication is challenging because pain is difficult to quantify due to the subjectiveness of pain assessment. Currently, clinicians must entirely rely on pain scales based on patients' assessments. This has been alleged to be one of the causes of drug overdose and addiction, and a contributor to the opioid crisis. Therefore, there is an urgent unmet need for objective pain assessment. Furthermore, as pain can occur anytime and anywhere, ambulatory pain monitoring would be welcomed in practice. In our previous study, we developed electrodermal activity (EDA)-derived indices and implemented them in a smartphone application that can communicate via Bluetooth to an EDA wearable device. While we previously showed high accuracy for high-level pain detection, multi-level pain detection has not been demonstrated. In this paper, we tested our smartphone application with a multi-level pain-induced dataset. The dataset was collected from fifteen subjects who underwent four levels of pain-inducing electrical pulse (EP) stimuli. We then performed statistical analyses and machine-learning techniques to classify multiple pain levels. Significant differences were observed in our EDA-derived indices among no-pain, low-pain, and high-pain segments. A random forest classifier showed 62.6% for the balanced accuracy, and a random forest regressor exhibited 0.441 for the coefficient of determination. Clinical Relevance - This is one of the first studies to present a smartphone application for detecting multiple levels of pain in real time using an EDA wearable device. This work shows the feasibility of ambulatory pain monitoring which can potentially be useful for chronic pain management.


Assuntos
Resposta Galvânica da Pele , Smartphone , Humanos , Monitorização Ambulatorial , Dor/diagnóstico , Medição da Dor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA