Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell Commun Signal ; 22(1): 304, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831326

RESUMO

Elevated concentrations of palmitate in serum of obese individuals can impair endothelial function, contributing to development of cardiovascular disease. Although several molecular mechanisms of palmitate-induced endothelial dysfunction have been proposed, there is no consensus on what signaling event is the initial trigger of detrimental palmitate effects. Here we report that inhibitors of ER stress or ceramid synthesis can rescue palmitate-induced autophagy impairment in macro- and microvascular endothelial cells. Furthermore, palmitate-induced cholesterol synthesis was reverted using these inhibitors. Similar to cell culture data, autophagy markers were increased in serum of obese individuals. Subsequent lipidomic analysis revealed that palmitate changed the composition of membrane phospholipids in endothelial cells and that these effects were not reverted upon application of above-mentioned inhibitors. However, ER stress inhibition in palmitate-treated cells enhanced the synthesis of trilglycerides and restored ceramide levels to control condition. Our results suggest that palmitate induces ER-stress presumably by shift in membrane architecture, leading to impaired synthesis of triglycerides and enhanced production of ceramides and cholesterol, which altogether enhances lipotoxicity of palmitate in endothelial cells.


Assuntos
Estresse do Retículo Endoplasmático , Células Endoteliais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Autofagia/efeitos dos fármacos , Triglicerídeos/metabolismo , Colesterol/metabolismo , Palmitatos/farmacologia , Ceramidas/metabolismo
2.
Cell Commun Signal ; 20(1): 158, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229824

RESUMO

BACKGROUND: Ongoing differentiation processes characterize the mammary gland during sexual development and reproduction. In contrast, defective remodelling is assumed to be causal for breast tumorigenesis. We have shown recently that the myocardin-related transcription factor A (MRTF-A) is essential for forming regular hollow acinar structures. Moreover, MRTF-A activity is known to depend on the biochemical and physical properties of the surrounding extracellular matrix. In this study we analysed the mutual interaction of different matrix stiffnesses and MRTF-A activities on formation and maintenance of mammary acini. METHODS: Human MCF10A acini and primary mature organoids isolated from murine mammary glands were cultivated in 3D on soft and stiff matrices (200-4000 Pa) in conjunction with the Rho/MRTF/SRF pathway inhibitor CCG-203971 and genetic activation of MRTF-A. RESULTS: Three-dimensional growth on stiff collagen matrices (> 3000 Pa) was accompanied by increased MRTF-A activity and formation of invasive protrusions in acini cultures of human mammary MCF10A cells. Differential coating and synthetic hydrogels indicated that protrusion formation was attributable to stiffness but not the biochemical constitution of the matrix. Stiffness-induced protrusion formation was also observed in preformed acini isolated from murine mammary glands. Acinar outgrowth in both the MCF10A acini and the primary organoids was partially reverted by treatment with the Rho/MRTF/SRF pathway inhibitor CCG-203971. However, genetic activation of MRTF-A in the mature primary acini also reduced protrusion formation on stiff matrices, whilst it strongly promoted luminal filling matrix-independently. CONCLUSION: Our results suggest an intricate crosstalk between matrix stiffness and MRTF-A, whose activity is required for protrusion formation and sufficient for luminal filling of mammary acini. Video Abstract.


Assuntos
Glândulas Mamárias Humanas , Animais , Colágeno/metabolismo , Humanos , Hidrogéis , Glândulas Mamárias Humanas/metabolismo , Camundongos , Proteínas Nucleares , Transativadores/metabolismo
3.
Nucleic Acids Res ; 48(16): 8927-8942, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32692361

RESUMO

The differentiation and regeneration of skeletal muscle from myoblasts to myotubes involves myogenic transcription factors, such as myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF). In addition, post-transcriptional regulation by miRNAs is required during myogenesis. Here, we provide evidence for novel mechanisms regulating MRTF-A during myogenic differentiation. Endogenous MRTF-A protein abundance and activity decreased during C2C12 differentiation, which was attributable to miRNA-directed inhibition. Conversely, overexpression of MRTF-A impaired differentiation and myosin expression. Applying miRNA trapping by RNA affinity purification (miTRAP), we identified miRNAs which directly regulate MRTF-A via its 3'UTR, including miR-1a-3p, miR-206-3p, miR-24-3p and miR-486-5p. These miRNAs were upregulated during differentiation and specifically recruited to the 3'UTR of MRTF-A. Concomitantly, Ago2 recruitment to the MRTF-A 3'UTR was considerably increased, whereas Dicer1 depletion or 3'UTR deletion elevated MRTF-A and inhibited differentiation. MRTF-A protein expression was inhibited by ectopic miRNA expression in murine C2C12 and primary human myoblasts. 3'UTR reporter activity diminished upon differentiation or miRNA expression, whereas deletion of the predicted binding sites reversed these effects. Furthermore, TGF-ß abolished MRTF-A reduction and decreased miR-486-5p expression. Our findings implicate miR-24-3p and miR-486-5p in the repression of MRTF-A and suggest a complex network of transcriptional and post-transcriptional mechanisms regulating myogenesis.


Assuntos
MicroRNAs/metabolismo , Desenvolvimento Muscular , Mioblastos Esqueléticos/citologia , Transativadores/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Chlorocebus aethiops , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo
4.
Nucleic Acids Res ; 47(1): 375-390, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30371874

RESUMO

The oncofetal mRNA-binding protein IGF2BP1 and the transcriptional regulator SRF modulate gene expression in cancer. In cancer cells, we demonstrate that IGF2BP1 promotes the expression of SRF in a conserved and N6-methyladenosine (m6A)-dependent manner by impairing the miRNA-directed decay of the SRF mRNA. This results in enhanced SRF-dependent transcriptional activity and promotes tumor cell growth and invasion. At the post-transcriptional level, IGF2BP1 sustains the expression of various SRF-target genes. The majority of these SRF/IGF2BP1-enhanced genes, including PDLIM7 and FOXK1, show conserved upregulation with SRF and IGF2BP1 synthesis in cancer. PDLIM7 and FOXK1 promote tumor cell growth and were reported to enhance cell invasion. Consistently, 35 SRF/IGF2BP1-dependent genes showing conserved association with SRF and IGF2BP1 expression indicate a poor overall survival probability in ovarian, liver and lung cancer. In conclusion, these findings identify the SRF/IGF2BP1-, miRNome- and m6A-dependent control of gene expression as a conserved oncogenic driver network in cancer.


Assuntos
MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Fator de Resposta Sérica/genética , Adenosina/análogos & derivados , Adenosina/genética , Animais , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Cell Sci ; 130(13): 2172-2184, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515231

RESUMO

A change regarding the extent of adhesion - hereafter referred to as adhesion plasticity - between adhesive and less-adhesive states of mammalian cells is important for their behavior. To investigate adhesion plasticity, we have selected a stable isogenic subpopulation of human MDA-MB-468 breast carcinoma cells growing in suspension. These suspension cells are unable to re-adhere to various matrices or to contract three-dimensional collagen lattices. By using transcriptome analysis, we identified the focal adhesion protein tensin3 (Tns3) as a determinant of adhesion plasticity. Tns3 is strongly reduced at mRNA and protein levels in suspension cells. Furthermore, by transiently challenging breast cancer cells to grow under non-adherent conditions markedly reduces Tns3 protein expression, which is regained upon re-adhesion. Stable knockdown of Tns3 in parental MDA-MB-468 cells results in defective adhesion, spreading and migration. Tns3-knockdown cells display impaired structure and dynamics of focal adhesion complexes as determined by immunostaining. Restoration of Tns3 protein expression in suspension cells partially rescues adhesion and focal contact composition. Our work identifies Tns3 as a crucial focal adhesion component regulated by, and functionally contributing to, the switch between adhesive and non-adhesive states in MDA-MB-468 cancer cells.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Adesão Celular/genética , Tensinas/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Adesões Focais/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos
6.
J Cell Sci ; 129(7): 1391-403, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26872785

RESUMO

Integrin-mediated activation of small GTPases induces the polymerisation of G-actin into various actin structures and the release of the transcriptional co-activator MRTF from G-actin. Here we report that pan-integrin-null fibroblasts seeded on fibronectin and expressing ß1- and/or αV-class integrin contained different G-actin pools, nuclear MRTF-A (also known as MKL1 or MAL) levels and MRTF-A-SRF activities. The nuclear MRTF-A levels and activities were highest in cells expressing both integrin classes, lower in cells expressing ß1 integrins and lowest in cells expressing the αV integrins. Quantitative proteomics and transcriptomics analyses linked the differential MRTF-A activities to the expression of the ubiquitin-like modifier interferon-stimulated gene 15 (ISG15), which is known to modify focal adhesion and cytoskeletal proteins. The malignant breast cancer cell line MDA-MB-231 expressed high levels of ß1 integrins, ISG15 and ISGylated proteins, which promoted invasive properties, whereas non-invasive MDA-MB-468 and MCF-7 cell lines expressed low levels of ß1 integrins, ISG15 and ISGylated proteins. Our findings suggest that integrin-adhesion-induced MRTF-A-SRF activation and ISG15 expression constitute a newly discovered signalling circuit that promotes cell migration and invasion.


Assuntos
Neoplasias da Mama/patologia , Citocinas/metabolismo , Integrina alfaV/metabolismo , Integrina beta1/metabolismo , Transativadores/metabolismo , Ubiquitinas/metabolismo , Actinas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Citocinas/genética , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Humanos , Células MCF-7 , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ubiquitinas/genética
7.
Cell Commun Signal ; 16(1): 86, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463620

RESUMO

BACKGROUND: MRTF-A (myocardin-related transcription factor A) is a coactivator for SRF-mediated gene expression. The activity of MRTF-A is critically dependent on the dissociation of G-actin from N-terminal RPEL motifs. MRTF-SRF induction often correlates with enhanced polymerization of F-actin. Here we investigate MRTF regulation by the multifunctional JMY protein, which contains three WASP/verprolin homology 2 (WH2/V) domains and facilitates Arp2/3-dependent and -independent actin nucleation. METHODS: Co-immunoprecipitation experiments, immunofluorescence and luciferase reporter assays were combined with selective inhibitors to investigate the effect of JMY and its domains on MRTF-A in NIH 3 T3 mouse fibroblasts. RESULTS: JMY induced MRTF-A transcriptional activity and enhanced its nuclear translocation. Unexpectedly, MRTF-A was hyperactivated when the Arp2/3-recruiting CA region of JMY was deleted or mutated, suggesting an autoinhibitory mechanism for full-length JMY. Moreover, isolated WH2/V domains which are unable to nucleate actin were sufficient for nuclear accumulation and SRF activation. Recombinant WH2/V regions of JMY biochemically competed with MRTF-A for actin binding. Activation of MRTF-A by JMY was unaffected by Arp3 knockdown, by an Arp2/3 inhibitor, and by latrunculin which disassembles cellular F-actin. Restriction of JMY to the nucleus abrogated its MRTF-A activation. Finally, JMY RNAi reduced basal and stimulated transcriptional activation via MRTF-A. CONCLUSIONS: Our results suggest that JMY activates MRTF-SRF independently of F-actin via WH2/V-mediated competition with the RPEL region for G-actin binding in the cytoplasm. Furthermore, the C-terminal region facilitates an autoinhibitory effect on full-length JMY, possibly by intramolecular folding.


Assuntos
Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Actinas/metabolismo , Animais , Proteínas de Ciclo Celular , Citoplasma/metabolismo , Camundongos , Células NIH 3T3
8.
Am J Respir Cell Mol Biol ; 57(5): 603-614, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28657795

RESUMO

Although p38 mitogen-activated protein kinase (MAPK) is known to have a role in ischemic heart disease and many other diseases, its contribution to the pathobiology of right ventricular (RV) hypertrophy and failure is unclear. Therefore, we sought to investigate the role of p38 MAPK in the pathophysiology of pressure overload-induced RV hypertrophy and failure. The effects of the p38 MAPK inhibitor PH797804 were investigated in mice with RV hypertrophy/failure caused by exposure to hypoxia or pulmonary artery banding. In addition, the effects of p38 MAPK inhibition or depletion (by small interfering RNA) were studied in isolated mouse RV fibroblasts. Echocardiography, invasive hemodynamic measurements, immunohistochemistry, collagen assays, immunofluorescence staining, and Western blotting were performed. Expression of phosphorylated p38 MAPK was markedly increased in mouse and human hypertrophied/failed RVs. In mice, PH797804 improved RV function and inhibited cardiac fibrosis compared with placebo. In isolated RV fibroblasts, p38 MAPK inhibition reduced transforming growth factor (TGF)-ß-induced collagen production as well as stress fiber formation. Moreover, p38 MAPK inhibition/depletion suppressed TGF-ß-induced SMAD2/3 phosphorylation and myocardin-related transcription factor A (MRTF-A) nuclear translocation, and prevented TGF-ß-induced cardiac fibroblast transdifferentiation. Moreover, p38 MAPK inhibition in mice exposed to pulmonary artery banding led to diminished nuclear levels of MRTF-A and phosphorylated SMAD3 in RV fibroblasts. Together, our data indicate that p38 MAPK inhibition significantly improves RV function and inhibits RV fibrosis. Inhibition of p38 MAPK in RV cardiac fibroblasts, resulting in coordinated attenuation of MRTF-A cytoplasmic-nuclear translocation and SMAD3 deactivation, indicates that p38 MAPK signaling contributes to distinct disease-causing mechanisms.


Assuntos
Coração/fisiopatologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Transdiferenciação Celular/fisiologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Hipertensão Pulmonar/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Função Ventricular Direita/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
9.
Breast Cancer Res ; 19(1): 68, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592291

RESUMO

BACKGROUND: Myocardin-related transcription factors (MRTF) A and B link actin dynamics and mechanotransduction to gene expression. In mice, MRTF-A is involved in mammary gland differentiation, but its role in human mammary epithelial cells remains unclear. METHODS: Three-dimensional cultures of human mammary epithelial MCF10A cells were used to model acinar morphogenesis. Stable MRTF-A knockdown, MRTF-A/B rescue and MRTF-A/B overexpression was established to characterize the functional role during morphogenesis using confocal microscopy and expression analysis. Breast cancer patient databases were analyzed for MRTF-A expression. RESULTS: We showed that a precise temporal control of MRTFs is required for normal morphogenesis of MCF10A mammary acini. MRTF transcriptional activity, but not their protein amounts, is transiently induced during 3D acini formation. MRTF-A knockdown dramatically reduces acini size and prevents lumen formation. These effects are rescued by re-expression of MRTF-A, and partially by MRTF-B. Conversely, overexpression of MRTF-A and MRTF-B increases acini size, resulting in irregular spheroids without lumen and defective apico-basal polarity. These phenotypes correlate with deregulated expression of cell cycle inhibitors p21/Waf1, p27/Kip1 and altered phosphorylation of retinoblastoma protein. In MRTF overexpressing spheroids, proliferation and apoptosis are simultaneously increased at late stages, whilst neither occurs in control acini. MRTFs interfere with anoikis of the inner cells and cause an integrin switch from α6 to α5, repression of E-cadherin and induction of mesenchymal markers vimentin, Snai2 and Zeb1. Moreover, MRTF-overexpressing spheroids are insensitive to alteration in matrix stiffness. In two breast cancer cohorts, high expression of MRTF-A and known target genes was associated with decreased patient survival. CONCLUSION: MRTF-A is required for proliferation and formation of mammary acini from luminal epithelial cells. Conversely, elevated MRTF activity results in pre-malignant spheroid formation due to defective proliferation, polarity loss and epithelial-mesenchymal transition.


Assuntos
Células Acinares/metabolismo , Transição Epitelial-Mesenquimal , Epitélio/metabolismo , Transativadores/metabolismo , Células Acinares/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinoma de Células Acinares/genética , Carcinoma de Células Acinares/metabolismo , Carcinoma de Células Acinares/mortalidade , Carcinoma de Células Acinares/patologia , Ciclo Celular/genética , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transição Epitelial-Mesenquimal/genética , Epitélio/patologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Regiões Promotoras Genéticas , Transativadores/genética
10.
Mol Cell ; 35(3): 291-304, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19683494

RESUMO

We analyzed the G-actin-regulated transcriptome by gene expression analysis using previously characterized actin-binding drugs. We found many known MAL/MRTF-dependent target genes of serum response factor (SRF), as well as additional directly regulated genes. Surprisingly, several putative antiproliferative target genes were identified, including mig6/errfi-1, a negative regulator of the EGFR family. Mig6 induction occurred through actin-MAL-SRF signaling, and MAL was inducibly recruited to and activated a mig6 promoter element. Upregulation of Mig6 by lipid agonists such as LPA and S1P or actin drugs involved MAL and correlated with decreased activation of EGFR, MAPK/Erk, and c-fos. Mig6 depletion restored EGFR signaling and provided a proliferative advantage. Overexpression of MAL exhibited strong antiproliferative effects requiring the domains for SRF binding and transactivation, which supports antagonistic functions of MAL on growth-promoting signals. Our results show the existence of negatively acting transcriptional networks between pro- and antiproliferative signaling pathways toward SRF.


Assuntos
Actinas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana Transportadoras/fisiologia , Proteínas da Mielina/fisiologia , Proteolipídeos/fisiologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Proliferação de Células , Cicloeximida/farmacologia , Citocalasina D/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA Mensageiro/metabolismo , Tiazolidinas/farmacologia , Proteínas Supressoras de Tumor
11.
J Biol Chem ; 289(51): 35376-87, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25381249

RESUMO

Myocardin-related transcription factor A (MRTF-A/MAL/MKL1/BSAC) regulates the expression of serum-response factor (SRF)-dependent target genes in response to the Rho-actin signaling pathway. Overexpression or activation of MRTF-A affects shape, migration, and invasion of cells and contributes to human malignancies, including cancer. In this study, we report that inhibition of arginyltransferase 1 (ATE1), an enzyme mediating post-transcriptional protein arginylation, is sufficient to increase MRTF-A activity in MCF-7 human breast carcinoma cells independently of external growth factor stimuli. In addition, silencing or inhibiting ATE1 disrupted E-cadherin-mediated cell-cell contacts, enhanced formation of actin-rich protrusions, and increased the number of focal adhesions, subsequently leading to elevated chemotactic migration. Although arginylated actin did not differentially affect MRTF-A, a rapid loss of E-cadherin and F-actin reorganization preceded MRTF-A activation upon ATE1 inhibition. Conversely, ectopic ATE1 expression was sufficient to render MRTF-A inactive, both in resting cells and in cells with exogenously activated RhoA-actin pathways. In this study, we provide a critical link between protein arginylation and MRTF-A activity and place ATE1 upstream of myocardin-related transcription factor.


Assuntos
Aminoaciltransferases/metabolismo , Movimento Celular , Transativadores/metabolismo , Transcrição Gênica , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/genética , Western Blotting , Caderinas/metabolismo , Comunicação Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Citoesqueleto/metabolismo , Adesões Focais , Hemina/farmacologia , Humanos , Células MCF-7 , Microscopia de Fluorescência , Interferência de RNA , Taninos/farmacologia , Transativadores/genética
12.
Histochem Cell Biol ; 141(2): 123-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24091797

RESUMO

Compared to the cytoplasmic F-actin abundance in cells, nuclear F-actin levels are generally quite low. However, nuclear actin is present in certain cell types including oocytes and under certain cellular conditions including stress or serum stimulation. Currently, the architecture and polymerization status of nuclear actin networks has not been analyzed in great detail. In this study, we investigated the architecture and functions of such nuclear actin networks. We generated nuclear actin polymers by overexpression of actin proteins fused to a nuclear localization signal (NLS). Raising nuclear abundance of a NLS wild-type actin, we observed phalloidin- and LifeAct-positive actin bundles forming a nuclear cytoskeletal network consisting of curved F-actin. In contrast, a polymer-stabilizing actin mutant (NLS-G15S-actin) deficient in interacting with the actin-binding protein cofilin generated a nuclear actin network reminiscent of straight stress fiber-like microfilaments in the cytoplasm. We provide a first electron microscopic description of such nuclear actin polymers suggesting bundling of actin filaments. Employing different cell types from various species including neurons, we show that the morphology of and potential to generate nuclear actin are conserved. Finally, we demonstrate that nuclear actin affects cell function including morphology, serum response factor-mediated gene expression, and herpes simplex virus infection. Our data suggest that actin is able to form filamentous structures inside the nucleus, which share architectural and functional similarities with the cytoplasmic F-actin.


Assuntos
Actinas/genética , Núcleo Celular/metabolismo , Expressão Gênica , Proteínas Mutantes/genética , Actinas/metabolismo , Actinas/ultraestrutura , Linhagem Celular , Células HEK293 , Humanos , Imuno-Histoquímica , Proteínas Mutantes/metabolismo
13.
J Cell Sci ; 124(Pt 24): 4318-31, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22223881

RESUMO

Monomeric actin regulates gene expression through serum response factor (SRF) by inhibiting its transcriptional coactivator myocardin-related transcription factor (MAL/MRTF). Many affected genes encode cytoskeletal components. We have analysed the migratory effects of actin-MAL signalling and of new target genes in non-invasive highly adherent cells. Expression of active MAL impaired migration of both fibroblasts and epithelial cells, whereas dominant-negative constructs and partial knockdown of MAL/MRTF enhanced motility. Knockdown of three newly characterised G-actin-regulated MAL targets, integrin α5, plakophilin 2 (Pkp2) and FHL1, enhanced cell migration. All three were upregulated by external stimulation through actin-MAL-SRF signalling, and MAL and SRF were inducibly recruited to cis-regulatory elements of the integrin α5 and Pkp2 genes. Finally, the reduced migration of epithelial cells stably expressing MAL was partially reversed by knockdown of Pkp2 and FHL1. We conclude that the actin-MAL pathway promotes adhesive gene expression, including integrin α5, Pkp2 and FHL1, and that this is anti-motile for non-invasive cells harbouring high basal activity.


Assuntos
Movimento Celular/genética , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica , Transativadores/metabolismo , Regulação para Cima , Actinas/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Técnicas de Silenciamento de Genes , Integrina alfaV/genética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/antagonistas & inibidores , Proteínas com Domínio LIM/genética , Camundongos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Células NIH 3T3 , Placofilinas/antagonistas & inibidores , Placofilinas/genética , Regiões Promotoras Genéticas , Fator de Resposta Sérica/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/genética , Fatores de Transcrição/antagonistas & inibidores
14.
Basic Res Cardiol ; 108(2): 325, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23325387

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal disease for which no cure is yet available. The leading cause of death in PAH is right ventricular (RV) failure. Previously, the TNF receptor superfamily member fibroblast growth factor-inducible molecule 14 (Fn14) has been associated with different fibrotic diseases. However, so far there is no study demonstrating a causal role for endogenous Fn14 signaling in RV or LV heart disease. The purpose of this study was to determine whether global ablation of Fn14 prevents RV fibrosis and remodeling improving heart function. Here, we provide evidence for a causative role of Fn14 in pulmonary artery banding (PAB)-induced RV fibrosis and dysfunction in mice. Fn14 expression was increased in the RV after PAB. Mice lacking Fn14 (Fn14(-/-)) displayed substantially reduced RV fibrosis and dysfunction following PAB compared to wild-type littermates. Cell culture experiments demonstrated that activation of Fn14 induces collagen expression via RhoA-dependent nuclear translocation of myocardin-related transcription factor-A (MRTF-A)/MAL. Furthermore, activation of Fn14 in vitro caused fibroblast proliferation and myofibroblast differentiation, which corresponds to suppression of PAB-induced RV fibrosis in Fn14(-/-) mice. Moreover, our findings suggest that Fn14 expression is regulated by endothelin-1 (ET-1) in cardiac fibroblasts. We conclude that Fn14 is an endogenous key regulator in cardiac fibrosis and suggest this receptor as potential new target for therapeutic interventions in heart failure.


Assuntos
Hipertrofia Ventricular Direita/prevenção & controle , Miocárdio/patologia , Receptores do Fator de Necrose Tumoral/fisiologia , Disfunção Ventricular Direita/prevenção & controle , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Diferenciação Celular , Proliferação de Células , Colágeno/metabolismo , Citocina TWEAK , Endotelina-1/fisiologia , Hipertensão Pulmonar Primária Familiar , Fibrose/prevenção & controle , Imunofluorescência , Hipertensão Pulmonar/complicações , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Miofibroblastos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Receptor de TWEAK , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Regulação para Cima , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia
15.
Cell Death Dis ; 14(9): 639, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770456

RESUMO

The actin-regulated transcription factor MRTF-A represents a central relay in mechanotransduction and controls a subset of SRF-dependent target genes. However, gain-of-function studies in vivo are lacking. Here we characterize a conditional MRTF-A transgenic mouse model. While MRTF-A gain-of-function impaired embryonic development, induced expression of constitutively active MRTF-A provoked rapid hepatocyte ballooning and liver failure in adult mice. Specific expression in the intestinal epithelium caused an erosive architectural distortion, villus blunting, cryptal hyperplasia and colonic inflammation, resulting in transient weight loss. Organoids from transgenic mice repeatedly induced in vitro showed impaired self-renewal and defective cryptal compartments. Mechanistically, MRTF-A gain-of-function decreased proliferation and increased apoptosis, but did not induce fibrosis. MRTF-A targets including Acta2 and Pai-1 were induced, whereas markers of stem cells and differentiated cells were reduced. Our results suggest that activated MRTF-A in the intestinal epithelium shifts the balance between proliferation, differentiation and apoptosis.


Assuntos
Mutação com Ganho de Função , Transativadores , Camundongos , Animais , Transativadores/genética , Transativadores/metabolismo , Mecanotransdução Celular , Transdução de Sinais/genética , Camundongos Transgênicos , Mucosa Intestinal/metabolismo , Fator de Resposta Sérica/metabolismo
16.
Cancers (Basel) ; 15(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37297005

RESUMO

T-cell lymphomas are heterogeneous and rare lymphatic malignancies with unfavorable prognosis. Consequently, new therapeutic strategies are needed. The enhancer of zeste homologue 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 and responsible for lysine 27 trimethylation of histone 3. EZH2 is overexpressed in several tumor entities including T-cell neoplasms leading to epigenetic and consecutive oncogenic dysregulation. Thus, pharmacological EZH2 inhibition is a promising target and its clinical evaluation in T-cell lymphomas shows favorable results. We have investigated EZH2 expression in two cohorts of T-cell lymphomas by mRNA-profiling and immunohistochemistry, both revealing overexpression to have a negative impact on patients' prognosis. Furthermore, we have evaluated EZH2 inhibition in a panel of leukemia and lymphoma cell lines with a focus on T-cell lymphomas characterized for canonical EZH2 signaling components. The cell lines were treated with the inhibitors GSK126 or EPZ6438 that inhibit EZH2 specifically by competitive binding at the S-adenosylmethionine (SAM) binding site in combination with the common second-line chemotherapeutic oxaliplatin. The change in cytotoxic effects under pharmacological EZH2 inhibition was evaluated revealing a drastic increase in oxaliplatin resistance after 72 h and longer periods of combinational incubation. This outcome was independent of cell type but associated to reduced intracellular platinum. Pharmacological EZH2 inhibition revealed increased expression in SRE binding proteins, SREBP1/2 and ATP binding cassette subfamily G transporters ABCG1/2. The latter are associated with chemotherapy resistance due to increased platinum efflux. Knockdown experiments revealed that this was independent of the EZH2 functional state. The EZH2 inhibition effect on oxaliplatin resistance and efflux was reduced by additional inhibition of the regulated target proteins. In conclusion, pharmacological EZH2 inhibition is not suitable in combination with the common chemotherapeutic oxaliplatin in T-cell lymphomas revealing an EZH2-independent off-target effect.

17.
J Cell Sci ; 123(Pt 16): 2803-9, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20663922

RESUMO

Epithelial junctions are dynamically and functionally linked to the actin cytoskeleton, and their disassembly is a key event during physiological and pathological processes. We recently showed that epithelial disintegration facilitates transcriptional activation via Rac, G-actin, MAL (also known as MRTF) and serum response factor (SRF). Here, we investigate which specific component of the epithelial junction is essential for this MAL-SRF-mediated transcription. The Ca(2+)-dependent dissociation of polarised epithelial cells depleted of ZO proteins - which form adherens junctions (AJs) but completely lack tight junctions (TJs) - fully activated SRF. By contrast, AGS gastric adenocarcinoma epithelial cells, which form TJs but are deficient in E-cadherin, and therefore also in AJs, failed to activate SRF. The introduction of wild-type E-cadherin in AGS cells restored AJ formation and MAL-SRF inducibility. To gain further insight into the membrane-proximal signalling, AGS cells were stably transfected with E-cadherin-alpha-catenin fusions. Despite restored formation of cell-cell contacts containing the nectin-afadin complex and p120-catenin, these cells did not activate SRF upon junction dissociation, suggesting that signal transmission depends on the C-terminal tail of E-cadherin. We conclude that the dissociation of intercellular E-cadherin interactions from AJs, and signals originating from the C-terminal region covering the beta-catenin-binding site of E-cadherin, are essential for transcriptional activation via Rac, MAL and SRF, whereas TJs are not involved.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Células Epiteliais/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Junções Aderentes/genética , Animais , Caderinas/genética , Linhagem Celular , Proteínas de Ligação a DNA , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Expressão Gênica , Humanos , Camundongos , Proteínas de Fusão Oncogênica , Fator de Resposta Sérica/genética , Junções Íntimas/genética , Junções Íntimas/metabolismo , Transativadores/genética , Transcrição Gênica , Transfecção , alfa Catenina/metabolismo , beta Catenina/metabolismo
18.
Cell Commun Signal ; 10(1): 5, 2012 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-22385615

RESUMO

Serum response factor (SRF) acts as a multifunctional transcription factor regulated by mutually exclusive interactions with ternary complex factors (TCFs) or myocardin-related transcription factors (MRTFs). Binding of Rho- and actin-regulated MRTF:SRF complexes to target gene promoters requires an SRF-binding site only, whereas MAPK-regulated TCF:SRF complexes in addition rely on flanking sequences present in the serum response element (SRE). Here, we report on the activation of an SRE luciferase reporter by Tip, the viral oncoprotein essentially contributing to human T-cell transformation by Herpesvirus saimiri. SRE activation in Tip-expressing Jurkat T cells could not be attributed to triggering of the MAPK pathway. Therefore, we further analyzed the contribution of MRTF complexes. Indeed, Tip also activated a reporter construct responsive to MRTF:SRF. Activation of this reporter was abrogated by overexpression of a dominant negative mutant of the MRTF-family member MAL. Moreover, enrichment of monomeric actin suppressed the Tip-induced reporter activity. Further upstream, the Rho-family GTPase Rac, was found to be required for MRTF:SRF reporter activation by Tip. Initiation of this pathway was strictly dependent on Tip's ability to interact with Lck and on the activity of this Src-family kinase. Independent of Tip, T-cell stimulation orchestrates Src-family kinase, MAPK and actin pathways to induce SRF. These findings establish actin-regulated transcription in human T cells and suggest its role in viral oncogenesis.

19.
Front Cell Dev Biol ; 10: 899917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246999

RESUMO

Myoblast fusion is essential for the formation, growth, and regeneration of skeletal muscle, but the molecular mechanisms that govern fusion and myofiber formation remain poorly understood. Past studies have shown an important role of the actin cytoskeleton and actin regulators in myoblast fusion. The Cyclase-Associated Proteins (CAP) 1 and 2 recently emerged as critical regulators of actin treadmilling in higher eukaryotes including mammals. Whilst the role of CAP2 in skeletal muscle development and function is well characterized, involvement of CAP1 in this process remains elusive. Here we report that CAP1, plays a critical role in cytoskeletal remodeling during myoblast fusion and formation of myotubes. Cap1 mRNA and protein are expressed in both murine C2C12 and human LHCN-M2 myoblasts, but their abundance decreases during myogenic differentiation. Perturbing the temporally controlled expression of CAP1 by overexpression or CRISPR-Cas9 mediated knockout impaired actin rearrangement, myoblast alignment, expression of profusion molecules, differentiation into multinucleated myotubes, and myosin heavy chain expression. Endogenous Cap1 expression is post-transcriptionally downregulated during differentiation by canonical myomiRs miR-1, miR-133, and miR-206, which have conserved binding sites at the 3' UTR of the Cap1 mRNA. Deletion of the endogenous 3' UTR by CRISPR-Cas9 in C2C12 cells phenocopies overexpression of CAP1 by inhibiting myotube formation. Our findings implicates Cap1 and its myomiR-mediated downregulation in the myoblast fusion process and the generation of skeletal muscle.

20.
Nat Commun ; 13(1): 4262, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871249

RESUMO

In their GTP-bound (active) form, Rab proteins interact with effector proteins that control downstream signaling. One such Rab15 effector is Rep15, which is known to have a role in receptor recycling from the endocytic recycling compartment but otherwise remains poorly characterized. Here, we report the characterization of the Rep15:Rab15 interaction and identification of Rab3 paralogs and Rab34 as Rep15 interacting partners from a yeast two-hybrid assay. Biochemical validation of the interactions is presented and crystal structures of the Rep15:Rab3B and Rep15:Rab3C complexes provide additional mechanistic insight. We find that Rep15 adopts a globular structure that is distinct from other reported Rab15, Rab3 and Rab34 effectors. Structure-based mutagenesis experiments explain the Rep15:Rab interaction specificity. Rep15 depletion in U138MG glioblastoma cells impairs cell proliferation, cell migration and receptor recycling, underscoring the need for further clarification of the role of Rep15 in cancer.


Assuntos
Proteínas rab de Ligação ao GTP , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA