Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 73(4): 775-787.e10, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30642763

RESUMO

Little information is available about how post-transcriptional mechanisms regulate the aging process. Here, we show that the RNA-binding protein Pumilio2 (PUM2), which is a translation repressor, is induced upon aging and acts as a negative regulator of lifespan and mitochondrial homeostasis. Multi-omics and cross-species analyses of PUM2 function show that it inhibits the translation of the mRNA encoding for the mitochondrial fission factor (Mff), thereby impairing mitochondrial fission and mitophagy. This mechanism is conserved in C. elegans by the PUM2 ortholog PUF-8. puf-8 knock-down in old nematodes and Pum2 CRISPR/Cas9-mediated knockout in the muscles of elderly mice enhances mitochondrial fission and mitophagy in both models, hence improving mitochondrial quality control and tissue homeostasis. Our data reveal how a PUM2-mediated layer of post-transcriptional regulation links altered Mff translation to mitochondrial dynamics and mitophagy, thereby mediating age-related mitochondrial dysfunctions.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Proteínas de Ligação a RNA/metabolismo , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Regulação para Cima
2.
Nature ; 552(7684): 187-193, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29211722

RESUMO

Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-ß peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-ß proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-ß proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-ß proteotoxic diseases, such as Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Homeostase , Mitocôndrias/metabolismo , Proteostase , Doença de Alzheimer/genética , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Homeostase/efeitos dos fármacos , Humanos , Masculino , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Mitofagia/genética , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fosforilação Oxidativa , Agregação Patológica de Proteínas/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Compostos de Piridínio , Resposta a Proteínas não Dobradas/genética
3.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830330

RESUMO

Marinesco-Sjogren syndrome (MSS) is a rare multisystem pediatric disorder, caused by loss-of-function mutations in the gene encoding the endoplasmic reticulum cochaperone SIL1. SIL1 acts as a nucleotide exchange factor for BiP, which plays a central role in secretory protein folding. SIL1 mutant cells have reduced BiP-assisted protein folding, cannot fulfil their protein needs, and experience chronic activation of the unfolded protein response (UPR). Maladaptive UPR may explain the cerebellar and skeletal muscle degeneration responsible for the ataxia and muscle weakness typical of MSS. However, the cause of other more variable, clinical manifestations, such as mild to severe mental retardation, hypogonadism, short stature, and skeletal deformities, is less clear. To gain insights into the pathogenic mechanisms and/or adaptive responses to SIL1 loss, we carried out cell biological and proteomic investigations in skin fibroblasts derived from a young patient carrying the SIL1 R111X mutation. Despite fibroblasts not being overtly affected in MSS, we found morphological and biochemical changes indicative of UPR activation and altered cell metabolism. All the cell machineries involved in RNA splicing and translation were strongly downregulated, while protein degradation via lysosome-based structures was boosted, consistent with an attempt of the cell to reduce the workload of the endoplasmic reticulum and dispose of misfolded proteins. Cell metabolism was extensively affected as we observed a reduction in lipid synthesis, an increase in beta oxidation, and an enhancement of the tricarboxylic acid cycle, with upregulation of eight of its enzymes. Finally, the catabolic pathways of various amino acids, including valine, leucine, isoleucine, tryptophan, lysine, aspartate, and phenylalanine, were enhanced, while the biosynthetic pathways of arginine, serine, glycine, and cysteine were reduced. These results indicate that, in addition to UPR activation and increased protein degradation, MSS fibroblasts have profound metabolic alterations, which may help them cope with the absence of SIL1.


Assuntos
Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação com Perda de Função , Splicing de RNA , Degenerações Espinocerebelares/genética , Resposta a Proteínas não Dobradas , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/metabolismo , Criança , Ciclo do Ácido Cítrico/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Fatores de Troca do Nucleotídeo Guanina/deficiência , Humanos , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Cultura Primária de Células , Proteólise , Degenerações Espinocerebelares/metabolismo , Degenerações Espinocerebelares/patologia , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
4.
J Med Case Rep ; 16(1): 72, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139890

RESUMO

BACKGROUND: Since the beginning of the worldwide spread of severe acute respiratory syndrome coronavirus 2 to date, important knowledge has been obtained about the virus behavior in living subjects and on inanimate surfaces; however, there is still a lack of data on virus persistency on dead bodies and the risk of contagion from cadavers. CASE PRESENTATION: The present case shows the persistency of the severe acute respiratory syndrome coronavirus 2 viral genome in nasopharyngeal swabs performed on a drowned Caucasian man, aged 41 years old, who was completely asymptomatic when he was alive, up to 41 days after death. Specific real-time reverse transcriptase-polymerase chain reaction (TaqMan 2019-nCoV Assay Kit v2; Thermo Fisher Scientific, Italy and Realquality RQ-SARS-CoV-2, AB Analytical) was used to evaluate the swabs. CONCLUSIONS: This data reflect the importance of postmortem swabs in all autopsy cases, and not only in potential severe acute respiratory syndrome coronavirus 2-related death, and also highlight the necessity to evaluate virus positivity a long time after the moment of death, even if a low initial viral load was assessed.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Cadáver , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Manejo de Espécimes
5.
PLoS One ; 15(11): e0235943, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151953

RESUMO

Transmission pathways of SARS-CoV-2 are aerosol, droplet and touching infected material. The diffusion of the virus contagion among people is easier in indoor location, but direct detection of SARS-CoV-2 in air or on surfaces is quite sparse, especially regarding public transport, while it would be important to know how and if it is safe to use them. To answer these questions we analysed the air and the surfaces most usually touched by passengers inside a city bus during normal operation, in order to understand the possible spreading of the virus and the effectiveness of the protective measures. The measurements were carried out across the last week of the lockdown and the first week when, gradually, all the travel restrictions were removed. The air and surface samples were analysed with the RT-PCR for the detection of SARS-CoV-2 virus. After two weeks of measurements and more than 1100 passenger travelling on the bus the virus was never detected both on surfaces and on air, suggesting that the precautions adopted on public transportation are effective in reducing the COVID-19 spreading.


Assuntos
Aerossóis , Microbiologia do Ar , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/transmissão , Veículos Automotores , Pneumonia Viral/transmissão , COVID-19 , Humanos , Itália , Pandemias , SARS-CoV-2 , Viagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA