Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Biol ; 36(1): e23984, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37695262

RESUMO

OBJECTIVE: Determine if relative body fat (%BF) remains a biological norm in physically active, non-obese American men and women and determine reference values for other components of body composition. METHODS: Participants (n = 174 men, 70 women) were physically fit U.S. Marine 2nd Lieutenants, in their third decade of physical maturity (age 21-30). Body composition was assessed by dual-energy x-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA); and body images were obtained by 3D body scans. RESULTS: For men and women, respectively, %BF averaged 16.2 ± 4.1 (median 15.3), 24.3 ± 4.5 (median 23.8); fat-free mass (FFM): 67.7 ± 7.2, 49.4 ± 5.3 kg; FFM index: 21.5 ± 1.8, 18.3 ± 1.6 kg/m2 ; and body mass index (BMI): 25.5 ± 1.9, 24.1 ± 2.2 kg/m2 . Bone mineral content (BMC) was 5% of FFM; total body water (TBW) was 70%-72% of FFM. Physique remained similar between median and higher percentiles of %BF. Only small changes in key measures were noted across the six-month training program. CONCLUSIONS: Mean %BF of healthy active men and women in 2021 remains very similar to the 15% and 25% posited in 1980, suggesting that relative body fat has a normal fat-lean relationship in physically mature humans. These data may bring new attention to sex-appropriate %BF.


Assuntos
Tecido Adiposo , Composição Corporal , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Impedância Elétrica , Tecido Adiposo/metabolismo , Índice de Massa Corporal , Absorciometria de Fóton/métodos
2.
Am J Hum Biol ; 35(2): e23823, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36285812

RESUMO

OBJECTIVES: To improve predictive formulae for estimating body surface area (BSA) in healthy men and women using a modern three-dimensional scanner technology. METHODS: Body surface areas were obtained from a convenience sample of 1267 US Marines (464 women and 803 men) using a whole body surface scanner (Size Stream SS20). The reliability of SS20 measures of total and regional BSA within participants was compared across triplicate scans. We then derived a series of formulae to estimate SS20-measured BSA using various combinations of sex, height, and mass. We also assessed relationships between percent body fat measured by dual-energy x-ray absorptiometry and sex-specific formulae errors in Marines. RESULTS: Body surface areas recorded by the SS20 were highly reliable whether measured for the total body or by region (ICC ≥ .962). Formulae estimates of BSA from sex, height, and mass were precise (root-mean-square deviation, 0.031 m2 ). Errors from the Marine Corps formulae were positively associated with percent body fat for men (p = .001) but not women (p = .843). CONCLUSIONS: Clinicians, military leaders, and researchers can use the newly developed BSA formulae for precise estimates in healthy physically active men and women. Users should be aware that height- and mass-based BSA estimates are less accurate for individuals with extremely low or high percent body fat.


Assuntos
Tecido Adiposo , Modelos Biológicos , Masculino , Feminino , Humanos , Superfície Corporal , Reprodutibilidade dos Testes , Composição Corporal , Absorciometria de Fóton
3.
J Therm Biol ; 113: 103477, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055108

RESUMO

INTRODUCTION: this study describes the development of a female finite element thermoregulatory model (FETM) METHOD: the female body model was developed from medical image datasets of a median U.S. female and was constructed to be anatomically correct. The body model preserves the geometric shapes of 13 organs and tissues, including skin, muscles, fat, bones, heart, lungs, brain, bladder, intestines, stomach, kidneys, liver, and eyes. Heat balance within the body is described by the bio-heat transfer equation. Heat exchange at the skin surface includes conduction, convection, radiation, and sweat evaporation. Vasodilation, vasoconstriction, sweating, and shivering are controlled by afferent and efferent signals to and from the skin and hypothalamus. RESULTS: the model was validated with measured physiological data during exercise and rest in thermoneutral, hot, and cold conditions. Validations show the model predicted the core temperature (rectal and tympanic temperatures) and mean skin temperatures with acceptable accuracy (within 0.5 °C and 1.6 °C, respectively) CONCLUSION: this female FETM predicted high spatial resolution temperature distribution across the female body, which provides quantitative insights into human thermoregulatory responses in females to non-uniform and transient environmental exposure.


Assuntos
Regulação da Temperatura Corporal , Sudorese , Feminino , Humanos , Análise de Elementos Finitos , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Temperatura Cutânea , Febre , Temperatura Alta
4.
Hum Factors ; 64(8): 1306-1316, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33861157

RESUMO

OBJECTIVE: The aim of this study was to model the effect of body armor coverage on body core temperature elevation and wet-bulb globe temperature (WBGT) offset. BACKGROUND: Heat stress is a critical factor influencing the health and safety of military populations. Work duration limits can be imposed to mitigate the risk of exertional heat illness and are derived based on the environmental conditions (WBGT). Traditionally a 3°C offset to WBGT is recommended when wearing body armor; however, modern body armor systems provide a range of coverage options, which may influence thermal strain imposed on the wearer. METHOD: The biophysical properties of four military clothing ensembles of increasing ballistic protection coverage were measured on a heated sweating manikin in accordance with standard international criteria. Body core temperature elevation during light, moderate, and heavy work was modeled in environmental conditions from 16°C to 34°C WBGT using the heat strain decision aid. RESULTS: Increasing ballistic protection resulted in shorter work durations to reach a critical core temperature limit of 38.5°C. Environmental conditions, armor coverage, and work intensity had a significant influence on WBGT offset. CONCLUSION: Contrary to the traditional recommendation, the required WBGT offset was >3°C in temperate conditions (<27°C WBGT), particularly for moderate and heavy work. In contrast, a lower WBGT offset could be applied during light work and moderate work in low levels of coverage. APPLICATION: Correct WBGT offsets are important for enabling adequate risk management strategies for mitigating risks of exertional heat illness.


Assuntos
Transtornos de Estresse por Calor , Militares , Humanos , Temperatura , Temperatura Alta , Transtornos de Estresse por Calor/prevenção & controle , Resposta ao Choque Térmico
5.
J Strength Cond Res ; 36(4): 1053-1058, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265816

RESUMO

ABSTRACT: Figueiredo, PS, Looney, DP, Pryor, JL, Doughty, EM, McClung, HL, Vangala, SV, Santee, WR, Beidleman, BA, and Potter, AW. Verification of maximal oxygen uptake in active military personnel during treadmill running. J Strength Cond Res 36(4): 1053-1058, 2022-It is unclear whether verification tests are required to confirm "true" maximal oxygen uptake (V̇o2max) in modern warfighter populations. Our study investigated the prevalence of V̇o2max attainment in U.S. Army soldiers performing a traditional incremental running test. In addition, we examined the utility of supramaximal verification testing as well as repeated trials for familiarization for accurate V̇o2max assessment. Sixteen U.S. Army soldiers (1 woman, 15 men; age, 21 ± 2 years; height, 1.73 ± 0.06 m; body mass, 71.6 ± 10.1 kg) completed 2 laboratory visits, each with an incremental running test (modified Astrand protocol) and a verification test (110% maximal incremental test speed) on a motorized treadmill. We evaluated V̇o2max attainment during incremental testing by testing for the definitive V̇O2 plateau using a linear least-squares regression approach. Peak oxygen uptake (V̇o2peak) was considered statistically equivalent between tests if the 90% confidence interval around the mean difference was within ±2.1 ml·kg-1·min-1. Oxygen uptake plateaus were identified in 14 of 16 volunteers for visit 1 (87.5%) and all 16 volunteers for visit 2 (100%). Peak oxygen uptake was not statistically equivalent, apparent from the mean difference in V̇o2peak measures between the incremental test and verification test on visit 1 (2.3 ml·kg-1·min-1, [1.3-3.2]) or visit 2 (1.1 ml·kg-1·min-1 [0.2-2.1]). Interestingly, V̇o2peak was equivalent, apparent from the mean difference in V̇o2peak measures between visits for the incremental tests (0.0 ml·kg-1·min-1 [-0.8 to 0.9]) but not the verification tests (-1.2 ml·kg-1·min-1 [-2.2 to -0.2]). Modern U.S. Army soldiers can attain V̇o2max by performing a modified Astrand treadmill running test. Additional familiarization and verification tests for confirming V̇o2max in healthy active military personnel may be unnecessary.


Assuntos
Militares , Corrida , Adulto , Teste de Esforço/métodos , Feminino , Frequência Cardíaca , Humanos , Masculino , Oxigênio , Consumo de Oxigênio , Adulto Jovem
6.
Undersea Hyperb Med ; 49(2): 197-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35580487

RESUMO

Purpose: Diving in warm water increases thermal risk during exercise compared to thermoneutral waters. The purpose of this study was to evaluate exercise endurance in warm- and hot-water conditions in divers habituated to wet or dry heat. Methods: Nineteen male divers completed this study at the Navy Experimental Diving Unit. Subjects were assigned DRY or WET heat habituation groups. The DRY group (n=9) cycled at 125-150W for one hour in a non-immersed condition (34.4˚C, 50%RH), while the WET group (n=10) cycled at 50W for one hour while immersed in 34.4˚C water. Exercise time to exhaustion was tested on an underwater cycle ergometer in 35.8˚C (WARM) and 37.2˚C (HOT) water at 50W. Core temperature (Tc) was continuously recorded and for all dives. Results: Time to exhaustion was reduced in HOT compared to WARM water (p ≺0.01) in both DRY (92.7 ± 41.6 minutes in 35.8°C vs. 43.4 ± 17.5 minutes in 37.2°C) and WET (95.9 ± 39.2 minutes in 35.8°C vs. 53.4 ± 27.5 minutes in 37.2°C) groups, but did not differ between groups (p=0.62). Rate of Tc rise was greater with higher water temperature (p ≺0.01), but was not different between groups (p=0.68). Maximum Tc (p=0.94 and p=0.95) and Tc change from baseline (p=0.38 and p=0.34) was not different between water temperatures or habituation group, respectively. Conclusion: Endurance decreased with increased water temperature but was not different between WET and DRY. Divers became exhausted at a similar core temperature during WARM- and HOT-water exercise. Mechanisms and applications of heat acclimation for warm-water diving should be further explored.


Assuntos
Mergulho , Imersão , Temperatura Corporal , Mergulho/efeitos adversos , Exercício Físico , Temperatura Alta , Humanos , Masculino , Água
7.
Int J Biometeorol ; 65(8): 1415-1426, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33813648

RESUMO

This paper describes a Cold Weather Ensemble Decision Aid (CoWEDA) that provides guidance for cold weather injury prevention, mission planning, and clothing selection. CoWEDA incorporates current science from the disciplines of physiology, meteorology, clothing, and computer modeling. The thermal performance of a cold weather ensemble is defined by endurance times, which are the time intervals from initial exposure until the safety limits are reached. These safety limits correspond to conservative temperature thresholds that provide a warning of the approaching onset of frostbite and/or hypothermia. A validated six-cylinder thermoregulatory model is used to predict human thermal responses to cold while wearing different ensembles. The performance metrics, model, and a database of clothing properties were integrated into a user-friendly software application. CoWEDA is the first tool that allows users to build their own ensembles from the clothing menu (i.e., jackets, footwear, and accessories) for each body region (i.e., head, torso, lower body, hands, feet) and view their selections in the context of physiological strain and the operational consequences. Comparison of predicted values to skin and core temperatures, measured during 17 cold exposures ranging from 0 to -40°C, indicated that the accuracy of CoWEDA prediction is acceptable, and most predictions are within measured mean ± SD. CoWEDA predicts the risk of frostbite and hypothermia and ensures that a selected clothing ensemble is appropriate for expected weather conditions and activities. CoWEDA represents a significant enhancement of required clothing insulation (IREQ, ISO 11079) and wind chill index-based guidance for cold weather safety and survival.


Assuntos
Temperatura Baixa , Congelamento das Extremidades , Regulação da Temperatura Corporal , Técnicas de Apoio para a Decisão , Humanos , Roupa de Proteção , Tempo (Meteorologia)
8.
J Therm Biol ; 97: 102902, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863455

RESUMO

PURPOSE: We compared the accuracy and design of two thermoregulatory models, the US Army's empirically designed Heat Strain Decision Aid (HSDA) and the rationally based Health Risk Prediction (HRP) for predicting human thermal responses during exercise in hot and humid conditions and wearing chemical protective clothing. METHODS: Accuracy of the HSDA and HRP model predictions of core body and skin temperature (Tc, Ts) were compared to each other and relative to measured outcomes from eight male volunteers (age 24 ± 6 years; height 178 ± 5 cm; body mass 76.6 ± 8.4 kg) during intermittent treadmill marching in an environmental chamber (air temperature 29.3 ± 0.1 °C; relative humidity 56 ± 1%; wind speed 0.4 ± 0.1 m∙s-1) wearing three separate chemical protective ensembles. Model accuracies and precisions were evaluated by the bias, mean absolute error (MAE), and root mean square error (RMSE) compared to observed data mean ± SD and the calculated limits of agreement (LoA). RESULTS: Average predictions of Tc were comparable and acceptable for each method, HSDA (Bias 0.02 °C; MAE 0.18 °C; RMSE 0.21 °C) and HRP (Bias 0.10 °C; MAE 0.25 °C; RMSE 0.34 °C). The HRP averaged predictions for Ts were within an acceptable agreement to observed values (Bias 1.01 °C; MAE 1.01 °C; RMSE 1.11 °C). CONCLUSION: Both HSDA and HRP acceptably predict Tc and HRP acceptably predicts Ts when wearing chemical protective clothing during exercise in hot and humid conditions.


Assuntos
Temperatura Corporal , Exercício Físico/fisiologia , Resposta ao Choque Térmico , Temperatura Alta/efeitos adversos , Umidade/efeitos adversos , Modelos Biológicos , Roupa de Proteção , Adolescente , Adulto , Meio Ambiente , Humanos , Masculino , Adulto Jovem
9.
J Therm Biol ; 91: 102651, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32716889

RESUMO

Military working dogs (MWDs) are often required to operate in dangerous or extreme environments, to include hot and humid climate conditions. These scenarios can put MWD at significant risk of heat injury. To address this concern, a two-compartment (core, skin) rational thermophysiological model was developed to predict the temperature of a MWD during rest, exercise, and recovery. The Canine Thermal Model (CTM) uses inputs of MWD mass and length to determine a basal metabolic rate and body surface area. These calculations are used along with time series inputs of environmental conditions (air temperature, relative humidity, solar radiation and wind velocity) and level of metabolic intensity (MET) to predict MWD thermoregulatory responses. Default initial values of core and skin temperatures are set at neutral values representative of an average MWD; however, these can be adjusted to match known or expected individual temperatures. The rational principles of the CTM describe the heat exchange from the metabolic energy of the core compartment to the skin compartment by passive conduction as well as the application of an active control for skin blood flow and to tongue and lingual tissues. The CTM also mathematically describes heat loss directly to the environment via respiration, including panting. Thermal insulation properties of MWD fur are also used to influence heat loss from skin and gain from the environment. This paper describes the CTM in detail, outlining the equations used to calculate avenues of heat transfer (convective, conductive, radiative and evaporative), overall heat storage, and predicted responses of the MWD. Additionally, this paper outlines examples of how the CTM can be used to predict recovery from exertional heat strain, plan work/rest cycles, and estimate work duration to avoid overheating.


Assuntos
Regulação da Temperatura Corporal , Modelos Teóricos , Cães Trabalhadores/fisiologia , Animais , Metabolismo Basal , Tamanho Corporal , Cães , Condutividade Térmica
10.
J Therm Biol ; 92: 102650, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32888557

RESUMO

PURPOSE: Body surface area (BSA) is an important measurement for many thermophysiological, pharmaceutical, toxicological, environmental, and military applications. Unfortunately, BSA is difficult to quantify, and existing prediction methods are not optimized for contemporary populations. METHODS: The present study analyzed data body measurements from 5603 male and female participants of a US Army Anthropometric Survey to determine optimal methods for estimating BSA in modern US Army Soldiers. This data included 94 individual body measurements as well as three dimensional (3D) whole body scans for each participant. We used this data to assess and compared 15 existing equations to the measured data. We also derived best fitting nonlinear regression models for estimating BSA from different combinations of sex, height, and weight and iteratively included the remaining 91 measurements to determine which combinations resulted in the highest goodness-of-fit. RESULTS: We found that inclusion of armspan measurements as a third body dimension maximized the model goodness-of-fit. CONCLUSION: Some of the existing formulae provide reasonable estimates of 3D-scanner derived BSA; while our new formulae derived from this study allows for more accurate estimates of BSA using one or more common input variables.


Assuntos
Superfície Corporal , Adulto , Antropometria/métodos , Estatura , Peso Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Militares , Estados Unidos , Imagem Corporal Total/métodos , Adulto Jovem
11.
Int J Biometeorol ; 61(3): 477-486, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27543100

RESUMO

The purpose of this paper is to develop a database of tissue composition, distribution, volume, surface area, and skin thickness from anatomically correct human models, the virtual family. These models were based on high-resolution magnetic resonance imaging (MRI) of human volunteers, including two adults (male and female) and two children (boy and girl). In the segmented image dataset, each voxel is associated with a label which refers to a tissue type that occupies up that specific cubic millimeter of the body. The tissue volume was calculated from the number of the voxels with the same label. Volumes of 24 organs in body and volumes of 7 tissues in 10 specific body regions were calculated. Surface area was calculated from the collection of voxels that are touching the exterior air. Skin thicknesses were estimated from its volume and surface area. The differences between the calculated and original masses were about 3 % or less for tissues or organs that are important to thermoregulatory modeling, e.g., muscle, skin, and fat. This accurate database of body tissue distributions and geometry is essential for the development of human thermoregulatory models. Data derived from medical imaging provide new effective tools to enhance thermal physiology research and gain deeper insight into the mechanisms of how the human body maintains heat balance.


Assuntos
Composição Corporal , Modelos Teóricos , Adulto , Superfície Corporal , Regulação da Temperatura Corporal , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pele/anatomia & histologia
12.
J Therm Biol ; 64: 78-85, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28166950

RESUMO

Physiological models provide useful summaries of complex interrelated regulatory functions. These can often be reduced to simple input requirements and simple predictions for pragmatic applications. This paper demonstrates this modeling efficiency by tracing the development of one such simple model, the Heat Strain Decision Aid (HSDA), originally developed to address Army needs. The HSDA, which derives from the Givoni-Goldman equilibrium body core temperature prediction model, uses 16 inputs from four elements: individual characteristics, physical activity, clothing biophysics, and environmental conditions. These inputs are used to mathematically predict core temperature (Tc) rise over time and can estimate water turnover from sweat loss. Based on a history of military applications such as derivation of training and mission planning tools, we conclude that the HSDA model is a robust integration of physiological rules that can guide a variety of useful predictions. The HSDA model is limited to generalized predictions of thermal strain and does not provide individualized predictions that could be obtained from physiological sensor data-driven predictive models. This fully transparent physiological model should be improved and extended with new findings and new challenging scenarios.


Assuntos
Exercício Físico , Resposta ao Choque Térmico , Temperatura Alta , Modelos Teóricos , Sudorese/fisiologia , Humanos , Militares , Roupa de Proteção
13.
Front Endocrinol (Lausanne) ; 15: 1444568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149118

RESUMO

The Food and Drug Administration's (FDA) obesity drug guidance is set on the basis of body mass index (BMI), with thresholds of either BMI ≥30 or BMI ≥27 kg/m2 with weight-related comorbidities. While BMI is associated with obesity-related health outcomes, there are known limitations to use as a direct measure of body fat or metabolic health, and the American Medical Association has highlighted limitations of BMI in assessing individual obesity risks. BMI thresholds impose a barrier to treatment. In a sample from the NHANES dataset (n=6,646 men and women), 36% of individuals with metabolic syndrome (MetS) may not be eligible for obesity pharmacotherapy. This analysis provides quantifiable justification for refinement of the BMI treatment criteria with a more holistic assessment of individual obesity-related disease risk.


Assuntos
Índice de Massa Corporal , Síndrome Metabólica , Obesidade , Humanos , Masculino , Feminino , Inquéritos Nutricionais , Adulto , Pessoa de Meia-Idade
14.
Artigo em Inglês | MEDLINE | ID: mdl-38747476

RESUMO

OBJECTIVE: Thresholds for overweight and obesity are currently defined by body mass index (BMI), a poor surrogate marker of actual adiposity (percent body fat, %BF). Practical modern technologies provide estimates of %BF but medical providers need outcome-based %BF thresholds to guide patients. This analysis determines %BF thresholds based on key obesity-related comorbidities, exhibited as metabolic syndrome (MetSyn). These limits were compared to existing BMI thresholds of overweight and obesity. DESIGN: Correlational analysis of data from cross sectional sampling of 16,918 adults (8,734 men and 8,184 women) from the US population, accessed by the National Health and Nutrition Examination Survey (NHANES) public use datasets. RESULTS: Individuals measured by BMI as overweight (BMI>25 kg/m2) and with obesity (BMI>30 kg/m2) included 5% and 35% of individuals with MetSyn, respectively. For men, there were no cases of MetSyn below 18%BF, %BF equivalence to "overweight" (i.e., 5% of MetSyn individuals) occurred at 25%BF, and "obesity" (i.e., 35% of MetSyn individuals) corresponded to 30%BF. For women, there were no cases of MetSyn below 30%BF, "overweight" occurred at 36%BF, and "obesity" corresponded to 42%BF. Comparison of BMI to %BF illustrates the wide range of variability in BMI prediction of %BF, highlighting the potential importance of using more direct measures of adiposity to manage obesity-related disease. CONCLUSIONS: Practical methods of body composition estimation can now replace the indirect BMI assessment for obesity management, using threshold values provided from this study. Clinically relevant "overweight" can be defined as 25 and 36% BF for men and women, respectively, and "obesity" is defined as 30 and 42% BF for men and women.

15.
Front Physiol ; 15: 1406749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957215

RESUMO

Few US Marines earn perfect 300 scores on both their Physical Fitness Test (PFT) and Combat Fitness Test (CFT). The number 300 invokes the legendary 300 Spartans that fought at the Battle of Thermopylae, which inspired high physical fitness capabilities for elite ground forces ever since. Purpose: Determine distinguishing characteristics of the "300 Marines" (perfect PFT and CFT scores) that may provide insights into the physical and physiological requirements associated with this capability. These tests have been refined over time to reflect physical capabilities associated with Marine Corps basic rifleman performance. Materials and methods: Data were analyzed from US Marines, including 497 women (age, 29 ± 7 years; height 1.63 ± 0.07 m; body mass, 67.4 ± 8.4 kg) and 1,224 men (30 ± 8 years; 1.77 ± 0.07 m; 86.1 ± 11.1 kg). Marines were grouped by whether they earned perfect 300 scores on both the PFT and CFT (300 Marines) or not. We analyzed group differences in individual fitness test events and body composition (dual-energy x-ray absorptiometry). Results: Only 2.5% (n = 43) of this sample earned perfect PFT and CFT scores (n = 21 women; n = 22 men). Compared to sex-matched peers, 300 Marines performed more pull-ups, with faster three-mile run, maneuver-under-fire, and movement-to-contact times (each p < 0.001); 300 Marines of both sexes had lower fat mass, body mass index, and percent body fat (each p < 0.001). The lower percent body fat was explained by greater lean mass (p = 0.041) but similar body mass (p = 0.085) in women, whereas men had similar lean mass (p = 0.618), but lower total body mass (p = 0.025). Conclusion: Marines earning perfect PFT and CFT scores are most distinguished from their peers by their maneuverability, suggesting speed and agility capabilities. While both sexes had considerably lower percent body fat than their peers, 300 Marine women were relatively more muscular while men were lighter.

16.
Med Sci Sports Exerc ; 56(6): 1177-1185, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38291646

RESUMO

INTRODUCTION: The US Army Load Carriage Decision Aid (LCDA) metabolic model is used by militaries across the globe and is intended to predict physiological responses, specifically metabolic costs, in a wide range of dismounted warfighter operations. However, the LCDA has yet to be adapted for vest-borne load carriage, which is commonplace in tactical populations, and differs in energetic costs to backpacking and other forms of load carriage. PURPOSE: The purpose of this study is to develop and validate a metabolic model term that accurately estimates the effect of weighted vest loads on standing and walking metabolic rate for military mission-planning and general applications. METHODS: Twenty healthy, physically active military-age adults (4 women, 16 men; age, 26 ± 8 yr old; height, 1.74 ± 0.09 m; body mass, 81 ± 16 kg) walked for 6 to 21 min with four levels of weighted vest loading (0 to 66% body mass) at up to 11 treadmill speeds (0.45 to 1.97 m·s -1 ). Using indirect calorimetry measurements, we derived a new model term for estimating metabolic rate when carrying vest-borne loads. Model estimates were evaluated internally by k -fold cross-validation and externally against 12 reference datasets (264 total participants). We tested if the 90% confidence interval of the mean paired difference was within equivalence limits equal to 10% of the measured walking metabolic rate. Estimation accuracy, precision, and level of agreement were also evaluated by the bias, standard deviation of paired differences, and concordance correlation coefficient (CCC), respectively. RESULTS: Metabolic rate estimates using the new weighted vest term were statistically equivalent ( P < 0.01) to measured values in the current study (bias, -0.01 ± 0.54 W·kg -1 ; CCC, 0.973) as well as from the 12 reference datasets (bias, -0.16 ± 0.59 W·kg -1 ; CCC, 0.963). CONCLUSIONS: The updated LCDA metabolic model calculates accurate predictions of metabolic rate when carrying heavy backpack and vest-borne loads. Tactical populations and recreational athletes that train with weighted vests can confidently use the simplified LCDA metabolic calculator provided as Supplemental Digital Content to estimate metabolic rates for work/rest guidance, training periodization, and nutritional interventions.


Assuntos
Metabolismo Energético , Militares , Caminhada , Suporte de Carga , Humanos , Feminino , Masculino , Adulto , Caminhada/fisiologia , Metabolismo Energético/fisiologia , Adulto Jovem , Suporte de Carga/fisiologia , Calorimetria Indireta , Teste de Esforço
17.
Int J Circumpolar Health ; 82(1): 2194504, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989120

RESUMO

Biomathematical models quantitatively describe human physiological responses to environmental and operational stressors and have been used for planning and real-time prevention of cold injury. These same models can be applied from a military tactical perspective to gain valuable insights into the health status of opponent soldiers. This paper describes a use case for predicting physiological status of Russian soldiers invading Ukraine using open-source information. In March 2022, media outlets reported Russian soldiers in a stalled convoy invading Ukraine were at serious risk of hypothermia and predicted these soldiers would be "freezing to death" within days because of declining temperatures (down to -20°C). Using existing Army models, clothing data and open-source intelligence, modelling and analyses were conducted within hours to quantitatively assess the conditions and provide science-based predictions. These predictions projected a significant increase in risks of frostbite for exposed skin and toes and feet, with a very low (negligible) risk of hypothermia. Several days later, media outlets confirmed these predictions, reporting a steep rise in evacuations for foot frostbite injuries in these Russian forces. This demonstrated what can be done today with the existing mathematical physiology and how models traditionally focused on health risk can be used for tactical intelligence.


Assuntos
Congelamento das Extremidades , Hipotermia , Militares , Humanos , Temperatura Baixa , Congelamento , Ucrânia
18.
J Appl Physiol (1985) ; 135(1): 60-67, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199784

RESUMO

Global climate change has resulted in an increase in the number and intensity of environmental heat waves, both in areas traditionally associated with hot temperatures and in areas where heat waves did not previously occur. For military communities around the world, these changes pose progressively increasing risks of heat-related illnesses and interference with training sessions. This is a significant and persistent "noncombat threat" to both training and operational activities of military personnel. In addition to these important health and safety concerns, there are broader implications in terms of the ability of worldwide security forces to effectively do their job (particularly in areas that historically already have high ambient temperatures). In the present review, we attempt to quantify the impact of climate change on various aspects of military training and performance. We also summarize ongoing research efforts designed to minimize and/or prevent heat injuries and illness. In terms of future approaches, we propose the need to "think outside the box" for a more effective training/schedule paradigm. One approach may be to investigate potential impacts of a reversal of sleep-wake cycles during basic training during the hot months of the year, to minimize the usual increase in heat-related injuries, and to enhance the capacity for physical training and combat performance. Regardless of which approaches are taken, a central feature of successful present and future interventions will be that they are rigorously tested using integrative physiological approaches.


Assuntos
Transtornos de Estresse por Calor , Militares , Humanos , Aquecimento Global , Temperatura Alta , Mudança Climática , Exercício Físico , Transtornos de Estresse por Calor/prevenção & controle
19.
Mil Med ; 188(9-10): 3071-3078, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35822881

RESUMO

INTRODUCTION: It is unclear whether immersion heat acclimation benefits exercise in warm water conditions. This study examined the effects of heat acclimation strategies on heart rate (HR), core temperature, and time to exhaustion (TTE) during cycling exercise in varying warm water conditions. METHODS: Twenty male divers completed this study at the Navy Experimental Diving Unit. Subjects were randomly assigned to one of two 9-day heat acclimation groups. The first group (WARM; n = 10) cycled for 2 hours at 50 W in 34.4 °C water, while the second group (HOT; n = 10) cycled for 1 hour against minimal resistance in 36.7 °C water. Following acclimation, TTE was tested by underwater cycling (30 W) in 35.8 °C, 37.2 °C, and 38.6 °C water. RESULTS: Throughout acclimation, the rate of core temperature rise in the first 30 minutes of exercise increased (P = .02), but the maximum core temperature reached was not different for either group. Time to exhaustion (TTE) was reduced, and the rate of core temperature rise during performance testing increased (both P < .001) with increasing water temperature but was not different between groups. Core temperature and HR increased throughout performance testing in each water condition and were lower in the HOT compared to the WARM acclimation group (all P < .05) with the exception of core temperature in the 37.2 °C condition. CONCLUSIONS: Underwater exercise performance did not differ between the two acclimation strategies. This study suggests that passive acclimation to a higher water temperature may improve thermoregulatory and cardiovascular responses to exercise in warm water. Hot water immersion adaptations are dependent on exercise intensity and water temperature.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Humanos , Masculino , Regulação da Temperatura Corporal/fisiologia , Aclimatação/fisiologia , Exercício Físico/fisiologia , Adaptação Fisiológica , Temperatura Alta , Febre , Água , Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia
20.
BMJ Nutr Prev Health ; 6(2): 234-242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38618530

RESUMO

Women's roles in the US military have progressively changed over the past several decades. Previously women were barred from combat roles. Recent change in policy allow women into combat roles in the Marine Corps, and this has led to women being trained for combat specialties. Objectives: This observational cross-sectional study describes body composition and performance values for modern Marine Corps women. Methods: Volunteers were 736 Marine women who were assessed for body composition and physical performance; (age 29.5±7.3 (18-56) years; height 163.6±6.8 (131.0-186.1) cm; body mass 68.3±9.2 (42.0-105.3) kg; years in the military 8.9±6.8 (0.5-37) years-in-service). Body composition measures were obtained using dual-energy X-ray absorptiometry and single-frequency bioelectrical impedance analyses. Performance measures were obtained from official physical and combat fitness test scores (PFT; CFT) as well as from data on measured countermovement jumps (CMJ) on a calibrated force platform. Results: Mean body composition metrics for Marine women were: 47.5±5.7 fat free mass (FFM) (kg), 30.1%±6.4% body fat (%BF), 2.6±0.3 bone mineral content (kg), and 25.5±2.8 body mass index (kg/m2); performance metrics included 43.4±3.2 maximal oxygen uptake (VO2max; mL.kg.min), 22.4±7.1 CMJ height (cm) and 2575±565.2 CMJ peak power (W). Data showed strong correlations (r) (≥0.70) between PFT and VO2max scores (0.75), and moderate correlations (≥0.50) between CFT and VO2max scores (0.57), CFT and PFT scores (0.60), FFM and CMJ peak power (W) (0.68), and %BF to VO2max (-0.52), PFT (-0.54), CMJ-Ht (-0.52) and CMJ relative power (W/kg) (-0.54). Conclusion: Modern Marine women are both lean and physically high performing. Body composition is a poor predictor of general physical performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA