Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Erde ; 80(2)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33299255

RESUMO

NASA's search for habitable environments has focused on alteration mineralogy of the Martian crust and the formation of hydrous minerals, because they reveal information about the fluid and environmental conditions from which they precipitated. Extensive work has focused on the formation of alteration minerals at low temperatures, with limited work investigating metamorphic or high-temperature alteration. We have investigated such a site as an analog for Mars: a mafic dike on the Colorado Plateau that was hydrothermally altered from contact with groundwater as it was emplaced in the porous and permeable Jurassic Entrada sandstone. Our results show evidence for fluid mobility removing Si and K but adding S, Fe, Ca, and possibly Mg to the system as alteration progresses. Mineralogically, all samples contain calcite, hematite, and kaolinite; with most samples containing minor anatase, barite, halite, and dolomite. The number of alteration minerals increase with alteration. The hydrothermal system that formed during interaction of the magma (heat source) and groundwater would have been a habitable environment once the system cooled below ~120° C. The mineral assemblage is similar to alteration minerals seen within the Martian crust from orbit, including those at Gusev and Jezero Craters. Therefore, based on our findings, and extrapolating them to the Martian crust, these sites may represent habitable environments which would call for further exploration and sample return of such hydrothermally altered igneous materials.

2.
Astrobiology ; 21(2): 235-245, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33021813

RESUMO

Stable δ13C isotope analysis at hot and cold springs suggests that rapid degassing overprints carbon isotopic biosignatures even when microbial activity produces biogenic textures in the minerals. Mineral precipitation and potential biosignature preservation are evaluated at a cold spring system in Ten Mile Graben, Utah, USA, with scanning electron microscopy, X-ray diffraction, and stable carbon isotopes. Putative biogenic mineral habits such as aragonite microspheres and botryoids, and biologic materials (EPS and diatom tests) are abundant in modern mats, but the δ13C values are between +2‰ and +7.8‰, consistent with rapid CO2 degassing reported by other researchers. Multiple factors, however, influence isotopic signatures of mineral precipitates in this spring system, including rapid degassing, preferential microbial uptake of light carbon isotopes via multiple carboxylation pathways, hydrocarbon-charged fluid, and other inherited isotopic signatures in the fluid, particularly from dissolution of older limestones; therefore, it is not likely that this narrow range of isotopic ratios definitively shows an abiotic signature. A fossil vent preserves biogenic mineral habits, but not microbial body fossils. This study highlights the need for novel biosignature detection methods-and an understanding of what an abiotic signature definitively is-as we prepare for sample caching of carbonate rocks by the Mars2020 mission and future sample return.


Assuntos
Sedimentos Geológicos , Marte , Isótopos de Carbono , Carbonatos , Utah
3.
Astrobiology ; 19(9): 1075-1102, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335163

RESUMO

Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas , Ciclo do Carbono , Planeta Terra , Compostos Férricos/análise , Minerais/análise , Ciclo do Nitrogênio , Incerteza
4.
Life (Basel) ; 8(3)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081459

RESUMO

Members of the alunite group are precipitated at low pH (<1 to ~4) in oxidizing environments, are unstable in circumneutral conditions, and are widespread on Mars. At Mollies Nipple in Kane County, Utah, USA, jarosite and alunite are abundant as diagenetic cements in Jurassic sandstones. This research characterizes the jarosite and alunite cements with the goal of determining their origin, and tests the hypothesis that jarosite and alunite may be more stable than the current understanding indicates is possible. Previous studies have placed the jarosite- and alunite-bearing caprock at Mollies Nipple in the Navajo Sandstone, but the presence of water-lain deposits, volcanic ash, volcanic clasts, and peloids show that it is one of the overlying Middle Jurassic units that records sea level transgressions and regressions. A paragenetic timing, established from petrographic methods, shows that much of the cement was precipitated early in a marginal marine to coastal dune depositional environment with a fluctuating groundwater table that drove ferrolysis and evolved the groundwater to a low pH. Microbial interaction was likely a large contributor to the evolution of this acidity. Jarosite and alunite are clearly more stable in natural environments than is predicted by laboratory experiments, and therefore, the Martian environments that have been interpreted as largely acidic and/or dry over geologic time may have been more habitable than previously thought.

5.
Astrobiology ; 17(3): 216-230, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28323483

RESUMO

On Earth, microorganisms commonly enhance mineral precipitation and mediate mineralogical and chemical compositions of resulting deposits, particularly at spring systems. However, preservation of any type of microbial fossil or chemical or textural biosignature depends on the degree of alteration during diagenesis and factors such as exposure to diagenetic fluids. Little is known about the transformation of biosignatures during diagenesis over geologic time. Ten Mile Graben, Utah, USA, hosts a cold spring system that is an exceptional site for evaluation of diagenetic alteration of biosignatures because of the presence of modern springs with actively precipitating microbial mats and a series of progressively older tufa terraces (<400 ka) preserved in the area from the same spring system. A previously undescribed Jurassic laminated carbonate unit within the upper part of the Brushy Basin Member of the Morrison Formation is also exposed in Ten Mile Graben. This research characterizes the geology of these modern and Quaternary saline, Fe-undersaturated, circumneutral Ten Mile Graben cold springs and provides the first description in the literature of the Jurassic Brushy Basin Member of the Morrison Formation carbonate deposit. Taphonomy of microbial fossils is characterized by scanning electron microscopy (SEM). The data highlight two distinct methods of biosignature formation: (1) precipitation of minerals from an undersaturated solution owing to metabolic activity of the cells and (2) mineral precipitation on charged cell surfaces that produce distinctive microbial trace fossils. Although diagenesis can destroy or severely degrade biosignatures, particularly microbial fossils, some fossils and trace fossils are preserved because entombment by Ostwald ripening limits diagenetic alteration. Recognizing spring-fed, biogenic tufas is crucial for astrobiological research and the search for life on Mars. Key Words: Biosignatures-Taphonomy-Diagenesis-Carbonates-Hot springs. Astrobiology 17, 216-230.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/química , Fontes Termais/química , Origem da Vida , Carbonatos/análise , Microscopia Eletrônica de Varredura , Minerais/análise , Fatores de Tempo , Utah
6.
Astrobiology ; 17(4): 363-400, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28177270

RESUMO

This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Planeta Terra , Ferro/química , Água/química
7.
Astrobiology ; 14(1): 1-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24380534

RESUMO

Iron (oxyhydr)oxide microbial mats in modern to ∼100 ka tufa terraces are present in a cold spring system along Ten Mile Graben, southeastern Utah, USA. Mats exhibit morphological, chemical, and textural biosignatures and show diagenetic changes that occur over millennial scales. The Jurassic Brushy Basin Member of the Morrison Formation in the Four Corners region of the USA also exhibits comparable microbial fossils and iron (oxyhydr)oxide biosignatures in the lacustrine unit. Both the modern spring system and Brushy Basin Member represent alkaline, saline, groundwater-fed systems and preserve diatoms and other similar algal forms with cellular elaboration. Two distinct suites of elements (1. C, Fe, As and 2. C, S, Se, P) are associated with microbial fossils in modern and ancient iron (oxyhydr)oxides and may be potential markers for biosignatures. The presence of ferrihydrite in ∼100 ka fossil microbial mats and Jurassic rocks suggests that this thermodynamically unstable mineral may also be a potential biomarker. One of the most extensive sedimentary records on Mars is exposed in Gale Crater and consists of non-acidic clays and sulfates possibly of lacustrine origin. These terrestrial iron (oxyhydr)oxide examples are a valuable analogue because of similar iron- and clay-rich host rock compositions and will help (1) understand diagenetic processes in a non-acidic, saline lacustrine environment such as the sedimentary rocks in Gale Crater, (2) document specific biomediated textures, (3) demonstrate how biomediated textures might persist or respond to diagenesis over time, and (4) provide a ground truth library of textures to explore and compare in extraterrestrial iron (oxyhydr)oxides, where future explorations hope to detect past evidence of life.


Assuntos
Bactérias/química , Meio Ambiente Extraterreno/química , Fósseis , Sedimentos Geológicos/química , Ferro/análise , Marte , Minerais/análise , Óxidos/análise , Exobiologia , Ferro/química , Microscopia Eletrônica de Varredura , Minerais/química , Óxidos/química , Análise de Componente Principal , Espectrofotometria Atômica , Utah
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA