Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Biomacromolecules ; 25(1): 200-212, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38112036

RESUMO

The correlation between lignin structure, its properties, and performance is crucial for lignin engineering in high-value products. Currently, a widespread approach is to compare lignins which differ by more than one parameter (i.e., Kraft vs organosolv vs lignosulfonates) in various applications by attributing the changes in their properties/performance specifically to a certain variable (i.e., phenolic -OH groups). Herein, we suggest a novel approach to overcome this issue by changing only one variable at a time while keeping all others constant before investigating the lignin properties/performance. Indulin AT (Ind-AT), a softwood Kraft lignin, was chosen as the model substrate for this study. Selective (analytical) lignin modifications were used to mask/convert specific functionalities, such as aliphatic (AliphOH) including benzylic -OH (BenzOH) and phenolic -OH (PhOH) groups, carboxyl groups (-COOH) and carbonyl groups (CO) via methylation, acetylation, and reduction. The selectivity and completeness of the reactions were verified by comprehensive NMR analysis (31P and 2D HSQC) of the modified preparations together with state-of-the-art molar mass (MM) characterization. Methylene blue (MB) adsorption, antioxidant activity, and glass transition temperature (Tg) were used to demonstrate and compare the properties/performance of the obtained modified lignins. We found that the contribution of different functionalities in the adsorption of MB follows the trend BenzOH > -COOH > AlipOH > PhOH. Noteworthy, benzylic -OH contributes ca. 3 and 2.3 times more than phenolic and aliphatic -OH, respectively. An 11% and 17% increase of Tg was observed with respect to the unmodified Indulin by methylating benzylic -OH groups and through reduction, respectively, while full acetylation/methylation of aliphatic and phenolic -OH groups resulted in lower Tg. nRSI experiments revealed that phenolic -OH play a crucial role in increasing the antioxidant activity of lignin, while both aliphatic -OH groups and -COOHs possess a detrimental effect, most likely due to H-bonding. Overall, for the first time, we provide here a reliable approach for the engineering of lignin-based products in high value applications by disclosing the role of specific lignin functionalities.


Assuntos
Antioxidantes , Lignina , Lignina/química , Temperatura , Espectroscopia de Ressonância Magnética , Peso Molecular
2.
Biomacromolecules ; 25(5): 3076-3086, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38634234

RESUMO

Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.


Assuntos
Celulose , Celulose/química , Fibra de Algodão , Cromatografia em Gel/métodos
3.
Plant Physiol ; 188(1): 208-219, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34662399

RESUMO

Recent studies demonstrate that several polyphenolic compounds produced from beyond the canonical monolignol biosynthetic pathways can behave as lignin monomers, participating in radical coupling reactions and being incorporated into lignin polymers. Here, we show various classes of flavonoids, the chalconoid naringenin chalcone, the flavanones naringenin and dihydrotricin, and the flavone tricin, incorporated into the lignin polymer of papyrus (Cyperus papyrus L.) rind. These flavonoids were released from the rind lignin by Derivatization Followed by Reductive Cleavage (DFRC), a chemical degradative method that cleaves the ß-ether linkages, indicating that at least a fraction of each was integrated into the lignin as ß-ether-linked structures. Due to the particular structure of tricin and dihydrotricin, whose C-3' and C-5' positions at their B-rings are occupied by methoxy groups, these compounds can only be incorporated into the lignin through 4'-O-ß bonds. However, naringenin chalcone and naringenin have no substituents at these positions and can therefore form additional carbon-carbon linkages, including 3'- or 5'-ß linkages that form phenylcoumaran structures not susceptible to cleavage by DFRC. Furthermore, Nuclear Magnetic Resonance analysis indicated that naringenin chalcone can also form additional linkages through its conjugated double bond. The discovery expands the range of flavonoids incorporated into natural lignins, further broadens the traditional definition of lignin, and enhances the premise that any phenolic compound present at the cell wall during lignification could be oxidized and potentially integrated into the lignin structure, depending only on its chemical compatibility. This study indicates that papyrus lignin has a unique structure, as it is the only lignin known to date that integrates such a diversity of phenolic compounds from different classes of flavonoids. This discovery will open up new ways to engineer and design lignins with specific properties and for enhanced value.


Assuntos
Sítios de Ligação , Cyperus/química , Cyperus/metabolismo , Flavonoides/biossíntese , Lignina/biossíntese , Estrutura Molecular , Vias Biossintéticas , Egito
4.
Biomacromolecules ; 24(1): 166-177, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36542819

RESUMO

The reductive amination of dialdehyde cellulose (DAC) with 2-picoline borane was investigated for its applicability in the generation of bioderived thermoplastics. Five primary amines, both aliphatic and aromatic, were introduced to the cellulose backbone. The influences of the side chains on the course of the reaction were examined by various analytical techniques with microcrystalline cellulose as a model compound. The obtained insights were transferred to a 39%-oxidized softwood kraft pulp to study the thermal properties of thereby generated high-molecular-weight thermoplastics. The number-average molecular weights (Mn) of the diamine celluloses, ranging from 60 to 82 kD, were investigated by gel permeation chromatography. The diamine celluloses exhibited glass transition temperatures (Tg) from 71 to 112 °C and were stable at high temperatures. Diamine cellulose generated from aniline and DAC showed the highest conversion, the highest Tg (112 °C), and a narrow molecular weight distribution (D̵ of 1.30).


Assuntos
Aminas , Celulose , Aminação , Aminas/química , Celulose/química , Diaminas
5.
Small ; 18(13): e2105420, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119202

RESUMO

The conservation of historical paper objects with high cultural value is an important societal task. Papers that have been severely damaged by fire, heat, and extinguishing water, are a particularly challenging case, because of the complexity and severity of damage patterns. In-depth analysis of fire-damaged papers, by means of examples from the catastrophic fire in a 17th-century German library, shows the changes, which proceeded from the margin to the center, to go beyond surface charring and formation of hydrophobic carbon-rich layers. The charred paper exhibits structural changes in the nano- and micro-range, with increased porosity and water sorption. In less charred areas, cellulose is affected by both chain cleavage and cross-linking. Based on these results and conclusions with regard to adhesion of auxiliaries, a stabilization method is developed, which coats the damaged paper with a thin layer of cellulose nanofibers. It enables the reliable preservation of the paper and-most importantly-retrieval of the contained historical information: the nanofibers form a flexible, transparent film on the surface and adhere strongly to the damaged matrix, greatly reducing its fragility, giving it stability, and enabling digitization and further handling.


Assuntos
Celulose , Nanofibras , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Porosidade , Água
6.
Biomacromolecules ; 23(3): 1413-1422, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35212532

RESUMO

In technical lignins, functionality is strongly related to molar mass. Hence, any technical lignin exhibits concurrent functionality-type distribution (FTD) along its molar mass distribution (MMD). This study combined preparative size-exclusion chromatography with offline characterizations to acquire highly resolved profiles of the functional heterogeneity of technical lignins, which represent crucial information for their material use. The shape of these profiles showed considerable dissimilarity between different technical lignins and followed sigmoid trends. Determining the dispersity in functionality (DF) of lignins via their FTD revealed a rather homogeneous distribution of their functionalities (DF of 1.00-1.21). The high resolution of the acquired profiles of functional heterogeneity facilitated the development of a robust calculation method for the estimation of functional group contents of lignin fractions based simply on their MMD, an invaluable tool to simulate the effects of intended purification processes. Moreover, a more thorough evaluation of separations based on functionality becomes accessible.


Assuntos
Demência Frontotemporal , Lignina , Cromatografia em Gel , Humanos , Lignina/química , Peso Molecular
7.
J Am Chem Soc ; 143(41): 17040-17046, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617737

RESUMO

Selective surface modification of biobased fibers affords effective individualization and functionalization into nanomaterials, as exemplified by the TEMPO-mediated oxidation. However, such a route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the development of potential supermaterials. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with N-succinylimidazole, achieving regioselective surface modification of C6-OH, which can be reverted using mild post-treatments. No polymer degradation, cross-linking, nor changes in crystallinity occur under the mild processing conditions, yielding cellulose nanofibrils bearing carboxyl moieties, which can be removed by saponification. The latter offers a significant opportunity in the reconstitution of the chemical and structural interfaces associated with the native states. Consequently, 3D structuring of native elementary cellulose nanofibrils is made possible with the same supramolecular features as the biosynthesized fibers, which is required to unlock the full potential of cellulose as a sustainable building block.

8.
Biomacromolecules ; 22(10): 4365-4372, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506709

RESUMO

The electron beam irradiation (EBI) of native lignin has received little attention. Thus, its potential use in lignin-based biorefineries is not fully understood. EBI was applied to selected lignin samples and the structural and chemical changes were analyzed, revealing the suitability, limitations, and potential purpose of EBI in wood biorefineries. Isolated milled wood, kraft, and sulfite lignin from beech and eucalyptus were subjected to up to 200 kGy of irradiation. The analysis included gel permeation chromatography for molar masses, heteronuclear single quantum coherence (HSQC)- and 31P NMR and headspace gas chromatography-mass spectrometry for functional groups, and thermogravimetric analysis for thermal stability. Most samples resisted irradiation. Subtle changes occurred in the molecular weight distribution and thermal stability of milled wood lignin. EBI was found to be a suitable pretreatment method for woody biomass if the avoidance of lignin condensation and chemical modification is a high priority.


Assuntos
Eucalyptus , Lignina , Biomassa , Elétrons , Madeira
9.
Cellulose (Lond) ; 28(13): 8719-8734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34316103

RESUMO

Knowledge about the carbohydrate composition of pulp and paper samples is essential for their characterization, further processing, and understanding the properties. In this study, we compare sulfuric acid hydrolysis and acidic methanolysis, followed by GC-MS analysis of the corresponding products, by means of 42 cellulose and polysaccharide samples. Results are discussed and compared to solid-state NMR (crystallinity) and gel permeation chromatography (weight-averaged molecular mass) data. The use of the hydrolysis methods in the context of cellulose conservation science is evaluated, using e-beam treated and artificially aged cellulose samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10570-021-04048-6.

10.
Cellulose (Lond) ; 28(15): 9525-9545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720466

RESUMO

Future biorefineries are facing the challenge to separate and depolymerize biopolymers into their building blocks for the production of biofuels and basic molecules as chemical stock. Fungi have evolved lignocellulolytic enzymes to perform this task specifically and efficiently, but a detailed understanding of their heterogeneous reactions is a prerequisite for the optimization of large-scale enzymatic biomass degradation. Here, we investigate the binding of cellulolytic enzymes onto biopolymers by surface plasmon resonance (SPR) spectroscopy for the fast and precise characterization of enzyme adsorption processes. Using different sensor architectures, SPR probes modified with regenerated cellulose as well as with lignin films were prepared by spin-coating techniques. The modified SPR probes were analyzed by atomic force microscopy and static contact angle measurements to determine physical and surface molecular properties. SPR spectroscopy was used to study the activity and affinity of Trichoderma reesei cellobiohydrolase I (CBHI) glycoforms on the modified SPR probes. N-glycan removal led to no significant change in activity or cellulose binding, while a slightly higher tendency for non-productive binding to SPR probes modified with different lignin fractions was observed. The results suggest that the main role of the N-glycosylation in CBHI is not to prevent non-productive binding to lignin, but probably to increase its stability against proteolytic degradation. The work also demonstrates the suitability of SPR-based techniques for the characterization of the binding of lignocellulolytic enzymes to biomass-derived polymers. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10570-021-04002-6.

11.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299657

RESUMO

Papyri belong to the oldest writing grounds in history. Their conservation is of the highest importance in preserving our cultural heritage, which is best achieved based on an extensive knowledge of the materials' constituents to choose a tailored conservation approach. Thermogravimetric Analysis (TGA) has been widely employed to quantify cellulose and lignin in papyrus sheets, yielding reported lignin contents of 25% to 40%. In this work, the TGA method conventionally used for papyrus samples was repeated and compared to other lignin determination approaches (Klason-lignin and acetyl bromide-soluble lignin). TGA can lead to a large overestimation of the lignin content of commercial papyrus sheets (~27%) compared to the other methods (~5%). A similar overestimation of the lignin content was found for the pith and rind of the native papyrus plant. We concluded that the TGA method should, therefore, not be used for lignin quantification.


Assuntos
Lignina/análise , Extratos Vegetais
12.
Biomacromolecules ; 20(11): 4117-4125, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31560197

RESUMO

Although efficient and inexpensive, conventional viscometry to determine the average degree of polymerization (DP) of cellulose may mislead the final DP because cellulose degradation occurs in the used solvents, which consist of alkaline amino complexes of transition metals, such as cupri-ethylenediamine (CED). For oxidatively damaged pulps or celluloses, viscosity-DP determinations may be more inaccurate because alkali-induced ß-elimination reactions render such oxidized celluloses even more vulnerable. Despite the risk identified in many studies, a systematic investigation of the parameters affecting the viscosity-DP assessed by reliable analytics is still required. Here, a new approach evaluating the effects of CED on oxidized cellulosics was used (i.e., immediate pulp regeneration after dissolution in CED). In-depth molecular feature characterization (e.g., absolute molar masses and oxidized groups' profiling related to molecular weight distribution) by gel permeation chromatography coupled with fluorescence and multiangle laser light scattering clarified the behavior of oxidized celluloses and the influencing parameters upon dissolution in CED.


Assuntos
Celulose/química , Etilenodiaminas/química , Estresse Oxidativo/efeitos dos fármacos , Solventes/química , Álcalis/química , Celulose/metabolismo , Etilenodiaminas/farmacologia , Metais/química , Polimerização/efeitos dos fármacos , Elementos de Transição/química , Viscosidade/efeitos dos fármacos
13.
Biomacromolecules ; 20(8): 3142-3146, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31264848

RESUMO

Bacterial cellulose (BC) has a broad range of applications in biomedical fields and cosmetics. Applied as wound dressing, BC tends to stick to the sore especially upon drying, and hydrophobization improves its performance in this regard. This article reports a facile and rapid yet a highly efficient approach for BC hydrophobization through direct polymerization of ethyl 2-cyanoacrylate on the BC fibers. The modified material preserves the favorable porous structure of the matrix material while displaying significantly higher hydrophobicity and significantly decreased stickiness to the wound. The BC surface can be modified in 15 min. Overall, this can be considered a ready-to-apply approach for the fabrication of BC wound dressings with enhanced performance. The modification was demonstrated to improve the material's biocompatibility and to introduce antimicrobial activity (immortalized human fibroblast assay).


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/química , Celulose/química , Cianoacrilatos/química , Fibroblastos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Anti-Infecciosos/química , Bandagens , Fibroblastos/citologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Polimerização
14.
Biomacromolecules ; 19(3): 973-979, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29414240

RESUMO

Nanocellulose-based self-standing films are becoming a substrate for flexible electronics, diagnostics, and sensors. Strength and surface chemistry are vital variables for these film-based endeavors, the former is one of the assets of nanocellulose. To contribute to the latter, nanocellulose films are tuned with a side-specific functionalization, having an aldehyde and a carboxyl side. The functionalities were obtained combining premodification of the film components by periodate oxidation with ozone post-treatment. Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with an elastic modulus of 11 GPa. The ozone treatment of one film side induces conversion of the aldehyde into carboxyl functionalities. The ozone treatment on individual crystals was largely destructive. Remarkably, such degradation is not observed for the self-standing film, and the film strength at break is preserved. Preserving a physically intact film despite ozone treatment is a credit to using the dry film structure held together by interparticle covalent linkages. Additionally, gas-phase post-treatment avoids disintegration that could result from immersion into solvents. The crystalline cellulose "Janus" film is suggested as an interfacial component in biomaterial engineering, separation technology, or in layered composite materials for tunable affinity between the layers.


Assuntos
Celulose/química , Membranas Artificiais , Nanopartículas/química , Ozônio/química , Aldeídos/química , Oxirredução
15.
Biomacromolecules ; 19(7): 2969-2978, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29757619

RESUMO

2,3-Dialdehyde cellulose (DAC) of a high degree of oxidation (92% relative to AGU units) prepared by oxidation of microcrystalline cellulose with sodium periodate (48 °C, 19 h) is soluble in hot water. Solution casting, slow air drying, hot pressing, and reinforcement by cellulose nanocrystals afforded films (∼100 µm thickness) that feature intriguing properties: they have very smooth surfaces (SEM), are highly flexible, and have good light transmittance for both the visible and near-infrared range (89-91%), high tensile strength (81-122 MPa), and modulus of elasticity (3.4-4.0 GPa) depending on hydration state and respective water content. The extraordinarily low oxygen permeation of <0.005 cm3 µm m-2 day-1 kPa-1 (50% RH) and <0.03 cm3 µm m-2 day-1 kPa-1 (80% RH) can be regarded as a particularly interesting feature of DAC films. The unusually high initial contact angle of about 67° revealed a rather low hydrophilicity compared to other oxidatively modified or unmodified cellulosic materials which is most likely the result of inter- and intramolecular hemiacetal and hemialdal formation during drying and pressing.


Assuntos
Celulose/análogos & derivados , Membranas Artificiais , Celulose/química , Celulose/efeitos da radiação , Elasticidade , Temperatura Alta , Luz , Nanopartículas/química , Oxigênio/química
16.
Molecules ; 23(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200441

RESUMO

The effect of ball milling expressed as the yield of milled wood lignin (MWL) on the structure and molar mass of crude milled wood lignin (MWLc) preparation is studied to better understand the process' fundamentals and find optimal conditions for MWL isolation (i.e., to obtain the most representative sample with minimal degradation). Softwood (loblolly pine) MWLc preparations with yields of 20⁻75% have been isolated and characterized based on their molar mass distribution (by Size Exclusion Chromatography (SEC)), hydroxyl groups of different types (31P NMR), methoxyl groups (HS-ID GC-MS), and sugar composition (based on methanolysis). Classical MWL purification is not used to access the whole extracted lignin. The results indicate that lignin degradation during ball milling occurs predominantly in the high molar mass fraction and is less pronounced in the low molar mass fraction. This results in a significant decrease in the Mz and Mw of the extracted MWLc with an increase in the yield of MWLc, but has only a very subtle effect on the lignin structure if the yield of MWLc is kept below about 55%. Therefore, no tedious optimization of process variables is necessary to achieve the required MWLc yield in this range for structural studies of softwood MWL. The sugar composition shows higher amounts of pectin components in MWLs of low yields and higher amounts of glucan and mannan in high-yield MWLs, confirming that lignin extraction starts from the middle lamella in the earlier stages of MWL isolation, followed by lignin extraction from the secondary wall region.


Assuntos
Biotecnologia/métodos , Lignina/química , Pinus/química , Madeira/química , Peso Molecular , Açúcares/análise
17.
Molecules ; 23(6)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895798

RESUMO

The effective and straight-forward modification of nanostructured celluloses under aqueous conditions or as "never-dried" materials is challenging. We report a silanization protocol in water using catalytic amounts of hydrogen chloride and then sodium hydroxide in a two-step protocol. The acidic step hydrolyzes the alkoxysilane to obtain water-soluble silanols and the subsequent addition of catalytic amounts of NaOH induces a covalent reaction between cellulose surficial hydroxyl groups and the respective silanols. The developed protocol enables the incorporation of vinyl, thiol, and azido groups onto cellulose fibers and cellulose nanofibrils. In contrast to conventional methods, no curing or solvent-exchange is necessary, thereby the functionalized celluloses remain never-dried, and no agglomeration or hornification occurs in the process. The successful modification was proven by solid state NMR, ATR-IR, and EDX spectroscopy. In addition, the covalent nature of this bonding was shown by gel permeation chromatography of polyethylene glycol grafted nanofibrils. By varying the amount of silane agents or the reaction time, the silane loading could be tuned up to an amount of 1.2 mmol/g. Multifunctional materials were obtained either by prior carboxymethylation and subsequent silanization; or by simultaneously incorporating both vinyl and azido groups. The protocol reported here is an easy, general, and straight-forward avenue for introduction of anchor groups onto the surface of never-dried celluloses, ready for click chemistry post-modification, to obtain multifunctional cellulose substrates for high-value applications.


Assuntos
Celulose/química , Ácido Clorídrico/química , Silanos/síntese química , Hidróxido de Sódio/química , Catálise , Química Click , Nanofibras/química , Silanos/química , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química , Propriedades de Superfície , Compostos de Vinila/síntese química , Compostos de Vinila/química , Água/química
18.
Anal Chem ; 88(2): 1253-8, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26691171

RESUMO

The detection of individual chromophores that contribute to the overall discoloration of paper ("yellowing") is a challenge because those substances are only present in very small amounts. In this research, two analytical approaches based on ambient ionization techniques, namely, desorption electrospray ionization and paper spray, both coupled to mass spectrometry, are compared to each other with regard to their suitability for detecting acetylated cellulosic key chromophores. The paper spray approach proved to be the more sensitive and versatile method. Subsequently, paper spray (PS)-mass spectrometry was applied to model papers and historical papers in which the acetylated chromophores were detected successfully. Independent accurate mass measurements confirmed the results obtained from reference compounds, model samples, and real-world specimens.

19.
Biomacromolecules ; 17(9): 2972-80, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27529432

RESUMO

The cleavage of the C2-C3 bond in the building units of 1 → 4-linked polysaccharides by periodate formally results in two aldehyde units, which are present in several masked forms. The structural elucidation of such polysaccharide dialdehydes remains a big challenge. Since polysaccharide derivatives are increasingly applied in materials technology, unveiling the exact structure is of utmost importance. To address this issue for xylan, dialdehyde xylan (DAX, oxidation degree of 91.5%) has been synthesized as water-soluble polymer. The ATR-FTIR spectrum of DAX showed free aldehyde to be absent and exhibited a characteristic absorption at 858 cm(-1) related to hemiacetal groups. By a combination of 1D and 2D NMR techniques, it was confirmed that oxidized xylan is present as poly(2,6-dihydroxy-3-methoxy-5-methyl-3,5-diyl-1,4-dioxane). Based on GPC analysis, the DAX polymer shows a slightly lower molar mass (6.6 kDa) compared to the starting material (7.7 kDa) right after oxidation, and degraded further after one month of storage in 0.1 M NaCl solution (4.3 kDa). The oxidized xylan demonstrated lower thermal stability upon TGA analysis and a greater amount of residual char (20.6%) compared to the unmodified xylan (13.7%).


Assuntos
Aldeídos/química , Ácido Periódico/química , Polímeros/química , Polissacarídeos/síntese química , Água/química , Xilanos/química , Peso Molecular , Oxirredução
20.
Angew Chem Int Ed Engl ; 55(46): 14455-14458, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27761976

RESUMO

Despite the structural, load-bearing role of cellulose in the plant kingdom, countless efforts have been devoted to degrading this recalcitrant polysaccharide, particularly in the context of biofuels and renewable nanomaterials. Herein, we show how the exposure of plant-based fibers to HCl vapor results in rapid degradation with simultaneous crystallization. Because of the unchanged sample texture and the lack of mass transfer out of the substrate in the gas/solid system, the changes in the crystallinity could be reliably monitored. Furthermore, we describe the preparation of cellulose nanocrystals in high yields and with minimal water consumption. The study serves as a starting point for the solid-state tuning of the supramolecular properties of morphologically heterogeneous biological materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA