Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(11): 1376-1391, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261723

RESUMO

Rationale: The ubiquitous polyamine spermidine is essential for cell survival and proliferation. One important function of spermidine is to serve as a substrate for hypusination, a posttranslational modification process that occurs exclusively on eukaryotic translation factor 5A (eIF5A) and ensures efficient translation of various gene products. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive obliteration of the small pulmonary arteries (PAs) caused by excessive proliferation of PA smooth muscle cells (PASMCs) and suppressed apoptosis. Objectives: To characterize the role of hypusine signaling in PAH. Methods: Molecular, genetic, and pharmacological approaches were used both in vitro and in vivo to investigate the role of hypusine signaling in pulmonary vascular remodeling. Measurements and Main Results: Hypusine forming enzymes-deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH)-and hypusinated eukaryotic translation factor 5A are overexpressed in distal PAs and isolated PASMCs from PAH patients and animal models. In vitro, inhibition of DHPS using N1-guanyl-1,7-diaminoheptane or shRNA resulted in a decrease in PAH-PASMC resistance to apoptosis and proliferation. In vivo, inactivation of one allele of Dhps targeted to smooth muscle cells alleviates PAH in mice, and its pharmacological inhibition significantly decreases pulmonary vascular remodeling and improves hemodynamics and cardiac function in two rat models of established PAH. With mass spectrometry, hypusine signaling is shown to promote the expression of a broad array of proteins involved in oxidative phosphorylation, thus supporting the bioenergetic requirements of cell survival and proliferation. Conclusions: These findings support inhibiting hypusine signaling as a potential treatment for PAH.


Assuntos
Hipertensão Arterial Pulmonar , Transdução de Sinais , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Humanos , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Masculino , Modelos Animais de Doenças , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Camundongos , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Proliferação de Células/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Lisina/análogos & derivados
2.
Am J Respir Cell Mol Biol ; 68(5): 537-550, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36724371

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by progressive vascular remodeling of small pulmonary arteries (PAs) causing sustained elevation of PA pressure, right ventricular failure, and death. Similar to cancer cells, PA smooth muscle cells (PASMCs), which play a key role in pulmonary vascular remodeling, have adopted multiple mechanisms to sustain their survival and proliferation in the presence of stress. The histone methyltransferase G9a and its partner protein GLP (G9a-like protein) have been shown to exert oncogenic effects and to serve as a buffer against an exaggerated transcriptional response. Therefore, we hypothesized that upregulation of G9a and GLP in PAH plays a pivotal role in pulmonary vascular remodeling by maintaining the abnormal phenotype of PAH-PASMCs. We found that G9a is increased in PASMCs from patients with PAH as well as in remodeled PAs from animal models. Pharmacological inhibition of G9a/GLP activity using BIX01294 and UNC0642 significantly reduced the prosurvival and proproliferative potentials of cultured PAH-PASMCs. Using RNA sequencing, further exploration revealed that G9a/GLP promotes extracellular matrix production and affords protection against the negative effects of an overactive stress response. Finally, we found that therapeutic treatment with BIX01294 reduced pulmonary vascular remodeling and lowered mean PA pressure in fawn-hooded rats. Treatment of Sugen/hypoxia-challenged mice with BIX01294 also improved pulmonary hemodynamics and right ventricular function. In conclusion, these findings indicate that G9a/GLP inhibition may represent a new therapeutic approach in PAH.


Assuntos
Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Hipertensão Arterial Pulmonar/tratamento farmacológico , Remodelação Vascular , Proliferação de Células , Hipertensão Pulmonar Primária Familiar , Modelos Animais de Doenças , Miócitos de Músculo Liso , Artéria Pulmonar
3.
Am J Respir Crit Care Med ; 206(5): 608-624, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699679

RESUMO

Rationale: Pulmonary arterial hypertension (PAH) often results in death from right ventricular failure (RVF). NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3)-macrophage activation may promote RVF in PAH. Objectives: Evaluating the contribution of the NLRP3 inflammasome in RV macrophages to PAH RVF. Methods: Rats with decompensated RV hypertrophy (monocrotaline [MCT] and Sugen-5416 hypoxia [SuHx]) were compared with compensated RV hypertrophy rats (pulmonary artery banding). Echocardiography and right heart catheterization were performed. Macrophages, atrial natriuretic peptides, and fibrosis were evaluated by microscopy or flow cytometry. NLRP3 inflammasome activation and cardiotoxicity were confirmed by immunoblot and in vitro strategies. MCT rats were treated with SC-144 (a GP130 antagonist) or MCC950 (an NLRP3 inhibitor). Macrophage-NLRP3 activity was evaluated in patients with PAH RVF. Measurements and Main Results: Macrophages, fibrosis, and atrial natriuretic peptides were increased in MCT and SuHx RVs but not in left ventricles or pulmonary artery banding rats. Although MCT RV macrophages were inflammatory, lung macrophages were antiinflammatory. CCR2+ macrophages (monocyte-derived) were increased in MCT and SuHx RVs and highly expressed NLRP3. The macrophage-NLRP3 pathway was upregulated in patients with PAH with decompensated RVs. Cultured MCT monocytes showed NLRP3 activation, and in coculture experiments resulted in cardiomyocyte mitochondrial damage, which MCC950 prevented. In vivo, MCC950 reduced NLRP3 activation and regressed pulmonary vascular disease and RVF. SC-144 reduced RV macrophages and NLRP3 content, prevented STAT3 (signal transducer and activator of transcription 3) activation, and improved RV function without regressing pulmonary vascular disease. Conclusions: NLRP3-macrophage activation occurs in the decompensated RV in preclinical PAH models and patients with PAH. Inhibiting GP130 or NLRP3 signaling improves RV function. The concept that PAH RVF results from RV inflammation rather than solely from elevated RV afterload suggests a new therapeutic paradigm.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Fator Natriurético Atrial , Receptor gp130 de Citocina , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Fibrose , Ventrículos do Coração , Hipertrofia Ventricular Direita/etiologia , Inflamassomos , Ativação de Macrófagos , Macrófagos/metabolismo , Monocrotalina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hipertensão Arterial Pulmonar/etiologia , Ratos
4.
Thorax ; 77(3): 247-258, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34226205

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterised by exuberant tissue remodelling and associated with high unmet medical needs. Outcomes are even worse when IPF results in secondary pulmonary hypertension (PH). Importantly, exaggerated resistance to cell death, excessive proliferation and enhanced synthetic capacity are key endophenotypes of both fibroblasts and pulmonary artery smooth muscle cells, suggesting shared molecular pathways. Under persistent injury, sustained activation of the DNA damage response (DDR) is integral to the preservation of cells survival and their capacity to proliferate. Checkpoint kinases 1 and 2 (CHK1/2) are key components of the DDR. The objective of this study was to assess the role of CHK1/2 in the development and progression of IPF and IPF+PH. METHODS AND RESULTS: Increased expression of DNA damage markers and CHK1/2 were observed in lungs, remodelled pulmonary arteries and isolated fibroblasts from IPF patients and animal models. Blockade of CHK1/2 expression or activity-induced DNA damage overload and reverted the apoptosis-resistant and fibroproliferative phenotype of disease cells. Moreover, inhibition of CHK1/2 was sufficient to interfere with transforming growth factor beta 1-mediated fibroblast activation. Importantly, pharmacological inhibition of CHK1/2 using LY2606368 attenuated fibrosis and pulmonary vascular remodelling leading to improvement in respiratory mechanics and haemodynamic parameters in two animal models mimicking IPF and IPF+PH. CONCLUSION: This study identifies CHK1/2 as key regulators of lung fibrosis and provides a proof of principle for CHK1/2 inhibition as a potential novel therapeutic option for IPF and IPF+PH.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar Idiopática , Animais , Fibroblastos/metabolismo , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo
5.
Clin Sci (Lond) ; 136(1): 163-166, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35005770

RESUMO

In this commentary, we discuss new observations stating that spliced X-box-binding protein 1 (Xbp1s)-DNA damage-inducible transcript 3 (Ddit3) promotes monocrotaline (MCT)-induced pulmonary hypertension (Jiang et al., Clinical Science (2021) 135(21), https://doi.org/10.1042/CS20210612). Xbp1s-Ddit3 is involved in the regulation of endoplasmic reticulum stress but is also associated with DNA damage repair machinery. Pathologic DNA damage repair mechanisms have emerged as critical determinants of pulmonary hypertension development. We discuss the potential relationship among Xbp1s-Ddit3, DNA damage, and pulmonary hypertension. Although Xbp1s-Ddit3 contributes to the regulation of cell proliferation and apoptosis and the development of vascular lesions, whether Xbp1s is a friend or foe remains controversial.


Assuntos
Hipertensão Pulmonar , Apoptose , Dano ao DNA , Estresse do Retículo Endoplasmático/genética , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Monocrotalina , Fator de Transcrição CHOP/genética , Proteína 1 de Ligação a X-Box/genética
6.
FASEB J ; 35(8): e21771, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34275172

RESUMO

Impaired mitochondrial fusion, due in part to decreased mitofusin 2 (Mfn2) expression, contributes to unrestricted cell proliferation and apoptosis-resistance in hyperproliferative diseases like pulmonary arterial hypertension (PAH) and non-small cell lung cancer (NSCLC). We hypothesized that Mfn2 levels are reduced due to increased proteasomal degradation of Mfn2 triggered by its phosphorylation at serine 442 (S442) and investigated the potential kinase mediators. Mfn2 expression was decreased and Mfn2 S442 phosphorylation was increased in pulmonary artery smooth muscle cells from PAH patients and in NSCLC cells. Mfn2 phosphorylation was mediated by PINK1 and protein kinase A (PKA), although only PINK1 expression was increased in these diseases. We designed a S442 phosphorylation deficient Mfn2 construct (PD-Mfn2) and a S442 constitutively phosphorylated Mfn2 construct (CP-Mfn2). The effects of these modified Mfn2 constructs on Mfn2 expression and biological function were compared with those of the wildtype Mfn2 construct (WT-Mfn2). WT-Mfn2 increased Mfn2 expression and mitochondrial fusion in both PAH and NSCLC cells resulting in increased apoptosis and decreased cell proliferation. Compared to WT-Mfn2, PD-Mfn2 caused greater Mfn2 expression, suppression of proliferation, apoptosis induction, and cell cycle arrest. Conversely, CP-Mfn2 caused only a small increase in Mfn2 expression and did not restore mitochondrial fusion, inhibit cell proliferation, or induce apoptosis. Silencing PINK1 or PKA, or proteasome blockade using MG132, increased Mfn2 expression, enhanced mitochondrial fusion and induced apoptosis. In a xenotransplantation NSCLC model, PD-Mfn2 gene therapy caused greater tumor regression than did therapy with WT-Mfn2. Mfn2 deficiency in PAH and NSCLC reflects proteasomal degradation triggered by Mfn2-S442 phosphorylation by PINK1 and/or PKA. Inhibiting Mfn2 phosphorylation has potential therapeutic benefit in PAH and lung cancer.


Assuntos
Proliferação de Células , GTP Fosfo-Hidrolases/metabolismo , Hipertensão Pulmonar/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Proteólise , Células A549 , Animais , GTP Fosfo-Hidrolases/genética , Humanos , Hipertensão Pulmonar/genética , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , Fosforilação/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Quinases/genética
7.
Circ Res ; 126(12): 1723-1745, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32216531

RESUMO

RATIONALE: Right ventricular (RV) fibrosis in pulmonary arterial hypertension contributes to RV failure. While RV fibrosis reflects changes in the function of resident RV fibroblasts (RVfib), these cells are understudied. OBJECTIVE: Examine the role of mitochondrial metabolism of RVfib in RV fibrosis in human and experimental pulmonary arterial hypertension. METHODS AND RESULTS: Male Sprague-Dawley rats received monocrotaline (MCT; 60 mg/kg) or saline. Drinking water containing no supplement or the PDK (pyruvate dehydrogenase kinase) inhibitor dichloroacetate was started 7 days post-MCT. At week 4, treadmill testing, echocardiography, and right heart catheterization were performed. The effects of PDK activation on mitochondrial dynamics and metabolism, RVfib proliferation, and collagen production were studied in RVfib in cell culture. Epigenetic mechanisms for persistence of the profibrotic RVfib phenotype in culture were evaluated. PDK expression was also studied in the RVfib of patients with decompensated RV failure (n=11) versus control (n=7). MCT rats developed pulmonary arterial hypertension, RV fibrosis, and RV failure. MCT-RVfib (but not left ventricular fibroblasts) displayed excess mitochondrial fission and had increased expression of PDK isoforms 1 and 3 that persisted for >5 passages in culture. PDK-mediated decreases in pyruvate dehydrogenase activity and oxygen consumption rate were reversed by dichloroacetate (in RVfib and in vivo) or siRNA targeting PDK 1 and 3 (in RVfib). These interventions restored mitochondrial superoxide and hydrogen peroxide production and inactivated HIF (hypoxia-inducible factor)-1α, which was pathologically activated in normoxic MCT-RVfib. Redox-mediated HIF-1α inactivation also decreased the expression of TGF-ß1 (transforming growth factor-beta-1) and CTGF (connective tissue growth factor), reduced fibroblast proliferation, and decreased collagen production. HIF-1α activation in MCT-RVfib reflected increased DNMT (DNA methyltransferase) 1 expression, which was associated with a decrease in its regulatory microRNA, miR-148b-3p. In MCT rats, dichloroacetate, at therapeutic levels in the RV, reduced phospho-pyruvate dehydrogenase expression, RV fibrosis, and hypertrophy and improved RV function. In patients with pulmonary arterial hypertension and RV failure, RVfib had increased PDK1 expression. CONCLUSIONS: MCT-RVfib manifest a DNMT1-HIF-1α-PDK-mediated, chamber-specific, metabolic memory that promotes collagen production and RV fibrosis. This epigenetic mitochondrial-metabolic pathway is a potential antifibrotic therapeutic target.


Assuntos
Epigênese Genética , Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miofibroblastos/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Animais , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Fibrose , Ventrículos do Coração/patologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Dinâmica Mitocondrial , Monocrotalina/toxicidade , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
8.
Am J Respir Crit Care Med ; 203(5): 614-627, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021405

RESUMO

Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness.Objectives: To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.Methods: Protein expression profiling was conducted by two-dimensional liquid chromatography coupled to tandem mass spectrometry in isolated PASMCs from controls and patients with PAH. Multiple molecular, biochemical, and pharmacologic approaches were used to decipher the role of NUDT1 (nudrix hyrolase 1) in PAH.Measurements and Main Results: Increased expression of the detoxifying DNA enzyme NUDT1 was detected in cells and tissues from patients with PAH and animal models. In vitro, molecular or pharmacological inhibition of NUDT1 in PAH-PASMCs induced accumulation of oxidized nucleotides in the DNA, irresolvable DNA damage (comet assay), disruption of cellular bioenergetics (Seahorse), and cell death (terminal deoxynucleotidyl transferase dUTP nick end labeling assay). In two animal models with established PAH (i.e., monocrotaline and Sugen/hypoxia-treated rats), pharmacological inhibition of NUDT1 using (S)-Crizotinib significantly decreased pulmonary vascular remodeling and improved hemodynamics and cardiac function.Conclusions: Our results indicate that, by overexpressing NUDT1, PAH-PASMCs hijack persistent oxidative stress in preventing incorporation of oxidized nucleotides into DNA, thus allowing the cell to escape apoptosis and proliferate. Given that NUDT1 inhibitors are under clinical investigation for cancer, they may represent a new therapeutic option for PAH.


Assuntos
Enzimas Reparadoras do DNA/genética , DNA/metabolismo , Estresse Oxidativo/genética , Monoéster Fosfórico Hidrolases/genética , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Remodelação Vascular/genética , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Adulto , Idoso , Animais , Apoptose/genética , Western Blotting , Estudos de Casos e Controles , Proliferação de Células/genética , Cromatografia Líquida , Ensaio Cometa , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box M1/metabolismo , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Oxirredução , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Espectrometria de Massas em Tandem , Regulação para Cima
9.
Circulation ; 142(15): 1464-1484, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32698630

RESUMO

BACKGROUND: Right ventricular (RV) function is the major determinant for both functional capacity and survival in patients with pulmonary arterial hypertension (PAH). Despite the recognized clinical importance of preserving RV function, the subcellular mechanisms that govern the transition from a compensated to a decompensated state remain poorly understood and as a consequence there are no clinically established treatments for RV failure and a paucity of clinically useful biomarkers. Accumulating evidence indicates that long noncoding RNAs are powerful regulators of cardiac development and disease. Nonetheless, their implication in adverse RV remodeling in PAH is unknown. METHODS: Expression of the long noncoding RNA H19 was assessed by quantitative PCR in plasma and RV from patients categorized as control RV, compensated RV or decompensated RV based on clinical history and cardiac index. The impact of H19 suppression using GapmeR was explored in 2 rat models mimicking RV failure, namely the monocrotaline and pulmonary artery banding. Echocardiographic, hemodynamic, histological, and biochemical analyses were conducted. In vitro gain- and loss-of-function experiments were performed in rat cardiomyocytes. RESULTS: We demonstrated that H19 is upregulated in decompensated RV from PAH patients and correlates with RV hypertrophy and fibrosis. Similar findings were observed in monocrotaline and pulmonary artery banding rats. We found that silencing H19 limits pathological RV hypertrophy, fibrosis and capillary rarefaction, thus preserving RV function in monocrotaline and pulmonary artery banding rats without affecting pulmonary vascular remodeling. This cardioprotective effect was accompanied by E2F transcription factor 1-mediated upregulation of enhancer of zeste homolog 2. In vitro, knockdown of H19 suppressed cardiomyocyte hypertrophy induced by phenylephrine, while its overexpression has the opposite effect. Finally, we demonstrated that circulating H19 levels in plasma discriminate PAH patients from controls, correlate with RV function and predict long-term survival in 2 independent idiopathic PAH cohorts. Moreover, H19 levels delineate subgroups of patients with differentiated prognosis when combined with the NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels or the risk score proposed by both REVEAL (Registry to Evaluate Early and Long-Term PAH Disease Management) and the 2015 European Pulmonary Hypertension Guidelines. CONCLUSIONS: Our findings identify H19 as a new therapeutic target to impede the development of maladaptive RV remodeling and a promising biomarker of PAH severity and prognosis.


Assuntos
Insuficiência Cardíaca/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Longo não Codificante/metabolismo , Remodelação Vascular , Disfunção Ventricular Direita/metabolismo , Animais , Biomarcadores/metabolismo , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/patologia , Humanos , Peptídeo Natriurético Encefálico/metabolismo , Fragmentos de Peptídeos/metabolismo , Hipertensão Arterial Pulmonar/mortalidade , Hipertensão Arterial Pulmonar/patologia , Ratos , Disfunção Ventricular Direita/mortalidade , Disfunção Ventricular Direita/patologia
10.
Circulation ; 141(24): 1986-2000, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32192357

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy. Hereditary cases are associated with germline mutations in BMPR2 and 16 other genes; however, these mutations occur in <25% of patients with idiopathic PAH and are rare in PAH associated with connective tissue diseases. Preclinical studies suggest epigenetic dysregulation, including altered DNA methylation, promotes PAH. Somatic mutations of Tet-methylcytosine-dioxygenase-2 (TET2), a key enzyme in DNA demethylation, occur in cardiovascular disease and are associated with clonal hematopoiesis, inflammation, and adverse vascular remodeling. The role of TET2 in PAH is unknown. METHODS: To test for a role of TET2, we used a cohort of 2572 cases from the PAH Biobank. Within this cohort, gene-specific rare variant association tests were performed using 1832 unrelated European patients with PAH and 7509 non-Finnish European subjects from the Genome Aggregation Database (gnomAD) as control subjects. In an independent cohort of 140 patients, we quantified TET2 expression in peripheral blood mononuclear cells. To assess causality, we investigated hemodynamic and histological evidence of PAH in hematopoietic Tet2-knockout mice. RESULTS: We observed an increased burden of rare, predicted deleterious germline variants in TET2 in PAH patients of European ancestry (9/1832) compared with control subjects (6/7509; relative risk=6; P=0.00067). Assessing the whole cohort, 0.39% of patients (10/2572) had 12 TET2 mutations (75% predicted germline and 25% somatic). These patients had no mutations in other PAH-related genes. Patients with TET2 mutations were older (71±7 years versus 48±19 years; P<0.0001), were more unresponsive to vasodilator challenge (0/7 versus 140/1055 [13.2%]), had lower pulmonary vascular resistance (5.2±3.1 versus 10.5±7.0 Wood units; P=0.02), and had increased inflammation (including elevation of interleukin-1ß). Circulating TET2 expression did not correlate with age and was decreased in >86% of PAH patients. Tet2-knockout mice spontaneously developed PAH, adverse pulmonary vascular remodeling, and inflammation, with elevated levels of cytokines, including interleukin-1ß. Long-term therapy with an antibody targeting interleukin-1ß blockade resulted in regression of PAH. CONCLUSIONS: PAH is the first human disease related to potential TET2 germline mutations. Inherited and acquired abnormalities of TET2 occur in 0.39% of PAH cases. Decreased TET2 expression is ubiquitous and has potential as a PAH biomarker.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Epigênese Genética/fisiologia , Mutação/fisiologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Adulto , Idoso , Animais , Estudos de Casos e Controles , Estudos de Coortes , Dioxigenases , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade
11.
Circ Res ; 124(12): 1727-1746, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-30922174

RESUMO

RATIONALE: Hypoxic pulmonary vasoconstriction (HPV) optimizes systemic oxygen delivery by matching ventilation to perfusion. HPV is intrinsic to pulmonary artery smooth muscle cells (PASMCs). Hypoxia dilates systemic arteries, including renal arteries. Hypoxia is sensed by changes in mitochondrial-derived reactive oxygen species, notably hydrogen peroxide (H2O2) ([H2O2]mito). Decreases in [H2O2]mito elevate pulmonary vascular tone by increasing intracellular calcium ([Ca2+]i) through reduction-oxidation regulation of ion channels. Although HPV is mimicked by the Complex I inhibitor, rotenone, the molecular identity of the O2 sensor is unknown. OBJECTIVE: To determine the role of Ndufs2 (NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 2), Complex I's rotenone binding site, in pulmonary vascular oxygen-sensing. METHODS AND RESULTS: Mitochondria-conditioned media from pulmonary and renal mitochondria isolated from normoxic and chronically hypoxic rats were infused into an isolated lung bioassay. Mitochondria-conditioned media from normoxic lungs contained more H2O2 than mitochondria-conditioned media from chronic hypoxic lungs or kidneys and uniquely attenuated HPV via a catalase-dependent mechanism. In PASMC, acute hypoxia decreased H2O2 within 112±7 seconds, followed, within 205±34 seconds, by increased intracellular calcium concentration, [Ca2+]i. Hypoxia had no effects on [Ca2+]i in renal artery SMC. Hypoxia decreases both cytosolic and mitochondrial H2O2 in PASMC while increasing cytosolic H2O2 in renal artery SMC. Ndufs2 expression was greater in PASMC versus renal artery SMC. Lung Ndufs2 cysteine residues became reduced during acute hypoxia and both hypoxia and reducing agents caused functional inhibition of Complex I. In PASMC, siNdufs2 (cells/tissue treated with Ndufs2 siRNA) decreased normoxic H2O2, prevented hypoxic increases in [Ca2+]i, and mimicked aspects of chronic hypoxia, including decreasing Complex I activity, elevating the nicotinamide adenine dinucleotide (NADH/NAD+) ratio and decreasing expression of the O2-sensitive ion channel, Kv1.5. Knocking down another Fe-S center within Complex I (Ndufs1, NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 1) or other mitochondrial subunits proposed as putative oxygen sensors (Complex III's Rieske Fe-S center and COX4i2 [cytochrome c oxidase subunit 4 isoform 2] in Complex IV) had no effect on hypoxic increases in [Ca2+]i. In vivo, siNdufs2 significantly decreased hypoxia- and rotenone-induced constriction while enhancing phenylephrine-induced constriction. CONCLUSIONS: Ndufs2 is essential for oxygen-sensing and HPV.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Hipóxia/metabolismo , NADH Desidrogenase/metabolismo , Oxigênio/metabolismo , Resistência Vascular/fisiologia , Vasoconstrição/fisiologia , Animais , Células Cultivadas , Hipóxia/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Técnicas de Cultura de Órgãos , Oxigênio/análise , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Circ Res ; 125(4): 449-466, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31154939

RESUMO

RATIONALE: Pulmonary hypertension (PH) due to left heart disease (LHD), or group 2 PH, is the most prevalent form of PH worldwide. PH due to LHD is often associated with metabolic syndrome (MetS). In 12% to 13% of cases, patients with PH due to LHD display vascular remodeling of pulmonary arteries (PAs) associated with poor prognosis. Unfortunately, the underlying mechanisms remain unknown; PH-targeted therapies for this group are nonexistent, and the development of a new preclinical model is crucial. Among the numerous pathways dysregulated in MetS, inflammation plays also a critical role in both PH and vascular remodeling. OBJECTIVE: We hypothesized that MetS and inflammation may trigger the development of vascular remodeling in group 2 PH. METHODS AND RESULTS: Using supracoronary aortic banding, we induced diastolic dysfunction in rats. Then we induced MetS by a combination of high-fat diet and olanzapine treatment. We used metformin treatment and anti-IL-6 (interleukin-6) antibodies to inhibit the IL-6 pathway. Compared with sham conditions, only supracoronary aortic banding+MetS rats developed precapillary PH, as measured by both echocardiography and right/left heart catheterization. PH in supracoronary aortic banding+MetS was associated with macrophage accumulation and increased IL-6 production in lung. PH was also associated with STAT3 (signal transducer and activator of transcription 3) activation and increased proliferation of PA smooth muscle cells, which contributes to remodeling of distal PA. We reported macrophage accumulation, increased IL-6 levels, and STAT3 activation in the lung of group 2 PH patients. In vitro, IL-6 activates STAT3 and induces human PA smooth muscle cell proliferation. Metformin treatment decreased inflammation, IL-6 levels, STAT3 activation, and human PA smooth muscle cell proliferation. In vivo, in the supracoronary aortic banding+MetS animals, reducing IL-6, either by anti-IL-6 antibody or metformin treatment, reversed pulmonary vascular remodeling and improve PH due to LHD. CONCLUSIONS: We developed a new preclinical model of group 2 PH by combining MetS with LHD. We showed that MetS exacerbates group 2 PH. We provided evidence for the importance of the IL-6-STAT3 pathway in our experimental model of group 2 PH and human patients.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar/patologia , Síndrome Metabólica/complicações , Disfunção Ventricular/complicações , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Humanos , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/metabolismo , Masculino , Síndrome Metabólica/etiologia , Olanzapina/toxicidade , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos , Ratos Wistar , Remodelação Vascular
13.
Arterioscler Thromb Vasc Biol ; 40(3): 783-801, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31969012

RESUMO

OBJECTIVE: Pulmonary arterial hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PAs). It is now established that this phenotype is associated with enhanced PA smooth muscle cells (PASMCs) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMCs to survive despite the unfavorable environmental conditions. PIM1 (Moloney murine leukemia provirus integration site) is an oncoprotein upregulated in PAH and involved in many prosurvival pathways, including DNA repair. The objective of this study was to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by pharmacological inhibitors in human PAH-PASMCs and in rat PAH models. Approach and Results: We found in vitro that PIM1 inhibition by either SGI-1776, TP-3654, siRNA (silencer RNA) decreased the phosphorylation of its newly identified direct target KU70 (lupus Ku autoantigen protein p70) resulting in the inhibition of double-strand break repair (Comet Assay) by the nonhomologous end-joining as well as reduction of PAH-PASMCs proliferation (Ki67-positive cells) and resistance to apoptosis (Annexin V positive cells) of PAH-PASMCs. In vivo, SGI-1776 and TP-3654 given 3× a week, improved significantly pulmonary hemodynamics (right heart catheterization) and vascular remodeling (Elastica van Gieson) in monocrotaline and Fawn-Hooded rat models of PAH. CONCLUSIONS: We demonstrated that PIM1 phosphorylates KU70 and initiates DNA repair signaling in PAH-PASMCs and that PIM1 inhibitors represent a therapeutic option for patients with PAH.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades , Hipertensão Pulmonar/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Apoptose , Proliferação de Células , Células Cultivadas , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Histonas/metabolismo , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Autoantígeno Ku/metabolismo , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Remodelação Vascular
14.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803922

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by a sustained elevation of pulmonary artery (PA) pressure, right ventricular failure, and premature death. Enhanced proliferation and resistance to apoptosis (as seen in cancer cells) of PA smooth muscle cells (PASMCs) is a major pathological hallmark contributing to pulmonary vascular remodeling in PAH, for which current therapies have only limited effects. Emerging evidence points toward a critical role for Enhancer of Zeste Homolog 2 (EZH2) in cancer cell proliferation and survival. However, its role in PAH remains largely unknown. The aim of this study was to determine whether EZH2 represents a new factor critically involved in the abnormal phenotype of PAH-PASMCs. We found that EZH2 is overexpressed in human lung tissues and isolated PASMCs from PAH patients compared to controls as well as in two animal models mimicking the disease. Through loss- and gain-of-function approaches, we showed that EZH2 promotes PAH-PASMC proliferation and survival. By combining quantitative transcriptomic and proteomic approaches in PAH-PASMCs subjected or not to EZH2 knockdown, we found that inhibition of EZH2 downregulates many factors involved in cell-cycle progression, including E2F targets, and contributes to maintain energy production. Notably, we found that EZH2 promotes expression of several nuclear-encoded components of the mitochondrial translation machinery and tricarboxylic acid cycle genes. Overall, this study provides evidence that, by overexpressing EZH2, PAH-PASMCs remove the physiological breaks that normally restrain their proliferation and susceptibility to apoptosis and suggests that EZH2 or downstream factors may serve as therapeutic targets to combat pulmonary vascular remodeling.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteoma/genética , Hipertensão Arterial Pulmonar/genética , Transcriptoma/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Ciclo do Ácido Cítrico/genética , Epigênese Genética/genética , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/crescimento & desenvolvimento , Artéria Pulmonar/patologia , Ratos
15.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L277-L288, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32551862

RESUMO

In the last few months, the number of cases of a new coronavirus-related disease (COVID-19) rose exponentially, reaching the status of a pandemic. Interestingly, early imaging studies documented that pulmonary vascular thickening was specifically associated with COVID-19 pneumonia, implying a potential tropism of the virus for the pulmonary vasculature. Moreover, SARS-CoV-2 infection is associated with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, DNA damage, and lung coagulopathy promoting endothelial dysfunction and microthrombosis. These features are strikingly similar to what is seen in pulmonary vascular diseases. Although the consequences of COVID-19 on the pulmonary circulation remain to be explored, several viruses have been previously thought to be involved in the development of pulmonary vascular diseases. Patients with preexisting pulmonary vascular diseases also appear at increased risk of morbidity and mortality. The present article reviews the molecular factors shared by coronavirus infection and pulmonary vasculature defects, and the clinical relevance of pulmonary vascular alterations in the context of COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/complicações , Pneumopatias/etiologia , Pulmão/irrigação sanguínea , Pulmão/fisiopatologia , Pneumonia Viral/complicações , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Citocinas/sangue , Dano ao DNA , Traumatismos Cardíacos/etiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Hipóxia/etiologia , Mediadores da Inflamação/sangue , Pulmão/virologia , Pneumopatias/fisiopatologia , Pneumopatias/virologia , Mitocôndrias/fisiologia , Miocárdio , Estresse Oxidativo , Pandemias , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , Circulação Pulmonar , Embolia Pulmonar/etiologia , Receptores Virais/fisiologia , Fatores de Risco , SARS-CoV-2 , Vasculite/etiologia
16.
Arterioscler Thromb Vasc Biol ; 39(8): 1667-1681, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31092016

RESUMO

OBJECTIVE: Pulmonary arterial hypertension (PAH) is a debilitating disease associated with progressive vascular remodeling of distal pulmonary arteries leading to elevation of pulmonary artery pressure, right ventricular hypertrophy, and death. Although presenting high levels of DNA damage that normally jeopardize their viability, pulmonary artery smooth muscle cells (PASMCs) from patients with PAH exhibit a cancer-like proproliferative and apoptosis-resistant phenotype accounting for vascular lumen obliteration. In cancer cells, overexpression of the serine/threonine-protein kinase CHK1 (checkpoint kinase 1) is exploited to counteract the excess of DNA damage insults they are exposed to. This study aimed to determine whether PAH-PASMCs have developed an orchestrated response mediated by CHK1 to overcome DNA damage, allowing cell survival and proliferation. Approach and Results: We demonstrated that CHK1 expression is markedly increased in isolated PASMCs and distal PAs from patients with PAH compared with controls, as well as in multiple complementary animal models recapitulating the disease, including monocrotaline rats and the simian immunodeficiency virus-infected macaques. Using a pharmacological and molecular loss of function approach, we showed that CHK1 promotes PAH-PASMCs proliferation and resistance to apoptosis. In addition, we found that inhibition of CHK1 induces downregulation of the DNA repair protein RAD 51 and severe DNA damage. In vivo, we provided evidence that pharmacological inhibition of CHK1 significantly reduces vascular remodeling and improves hemodynamic parameters in 2 experimental rat models of PAH. CONCLUSIONS: Our results show that CHK1 exerts a proproliferative function in PAH-PASMCs by mitigating DNA damage and suggest that CHK1 inhibition may, therefore, represent an attractive therapeutic option for patients with PAH.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Hipertensão Arterial Pulmonar/tratamento farmacológico , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Células Cultivadas , Quinase 1 do Ponto de Checagem/fisiologia , Dano ao DNA , Modelos Animais de Doenças , Humanos , Masculino , MicroRNAs/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley
17.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019763

RESUMO

The hexosamine biosynthetic pathway (HBP) converts glucose to uridine-diphosphate-N-acetylglucosamine, which, when added to serines or threonines, modulates protein function through protein O-GlcNAcylation. Glutamine-fructose-6-phosphate amidotransferase (GFAT) regulates HBP flux, and AMP-kinase phosphorylation of GFAT blunts GFAT activity and O-GlcNAcylation. While numerous studies demonstrate increased right ventricle (RV) glucose uptake in pulmonary arterial hypertension (PAH), the relationship between O-GlcNAcylation and RV function in PAH is unexplored. Therefore, we examined how colchicine-mediated AMP-kinase activation altered HBP intermediates, O-GlcNAcylation, mitochondrial function, and RV function in pulmonary artery-banded (PAB) and monocrotaline (MCT) rats. AMPK activation induced GFAT phosphorylation and reduced HBP intermediates and O-GlcNAcylation in MCT but not PAB rats. Reduced O-GlcNAcylation partially restored the RV metabolic signature and improved RV function in MCT rats. Proteomics revealed elevated expression of O-GlcNAcylated mitochondrial proteins in MCT RVs, which fractionation studies corroborated. Seahorse micropolarimetry analysis of H9c2 cardiomyocytes demonstrated colchicine improved mitochondrial function and reduced O-GlcNAcylation. Presence of diabetes in PAH, a condition of excess O-GlcNAcylation, reduced RV contractility when compared to nondiabetics. Furthermore, there was an inverse relationship between RV contractility and HgbA1C. Finally, RV biopsy specimens from PAH patients displayed increased O-GlcNAcylation. Thus, excess O-GlcNAcylation may contribute to metabolic derangements and RV dysfunction in PAH.


Assuntos
Diabetes Mellitus/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Disfunção Ventricular Direita/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acilação , Adulto , Idoso , Animais , Linhagem Celular , Estudos de Coortes , Colchicina/farmacologia , Diabetes Mellitus/diagnóstico por imagem , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Regulação da Expressão Gênica , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hexosaminas/metabolismo , Humanos , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Metaboloma , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Monocrotalina/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/fisiopatologia
20.
Circulation ; 138(3): 287-304, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29431643

RESUMO

BACKGROUND: Mitotic fission is increased in pulmonary arterial hypertension (PAH), a hyperproliferative, apoptosis-resistant disease. The fission mediator dynamin-related protein 1 (Drp1) must complex with adaptor proteins to cause fission. Drp1-induced fission has been therapeutically targeted in experimental PAH. Here, we examine the role of 2 recently discovered, poorly understood Drp1 adapter proteins, mitochondrial dynamics protein of 49 and 51 kDa (MiD49 and MiD51), in normal vascular cells and explore their dysregulation in PAH. METHODS: Immunoblots of pulmonary artery smooth muscle cells (control, n=6; PAH, n=8) and immunohistochemistry of lung sections (control, n=6; PAH, n=6) were used to assess the expression of MiD49 and MiD51. The effects of manipulating MiDs on cell proliferation, cell cycle, and apoptosis were assessed in human and rodent PAH pulmonary artery smooth muscle cells with flow cytometry. Mitochondrial fission was studied by confocal imaging. A microRNA (miR) involved in the regulation of MiD expression was identified using microarray techniques and in silico analyses. The expression of circulatory miR was assessed with quantitative reverse transcription-polymerase chain reaction in healthy volunteers (HVs) versus patients with PAH from Sheffield, UK (plasma: HV, n=29, PAH, n=27; whole blood: HV, n=11, PAH, n=14) and then confirmed in a cohort from Beijing, China (plasma: HV, n=19, PAH, n=36; whole blood: HV, n=20, PAH, n=39). This work was replicated in monocrotaline and Sugen 5416-hypoxia, preclinical PAH models. Small interfering RNAs targeting MiDs or an miR mimic were nebulized to rats with monocrotaline-induced PAH (n=4-10). RESULTS: MiD expression is increased in PAH pulmonary artery smooth muscle cells, which accelerates Drp1-mediated mitotic fission, increases cell proliferation, and decreases apoptosis. Silencing MiDs (but not other Drp1 binding partners, fission 1 or mitochondrial fission factor) promotes mitochondrial fusion and causes G1-phase cell cycle arrest through extracellular signal-regulated kinases 1/2- and cyclin-dependent kinase 4-dependent mechanisms. Augmenting MiDs in normal cells causes fission and recapitulates the PAH phenotype. MiD upregulation results from decreased miR-34a-3p expression. Circulatory miR-34a-3p expression is decreased in both patients with PAH and preclinical models of PAH. Silencing MiDs or augmenting miR-34a-3p regresses experimental PAH. CONCLUSIONS: In health, MiDs regulate Drp1-mediated fission, whereas in disease, epigenetic upregulation of MiDs increases mitotic fission, which drives pathological proliferation and apoptosis resistance. The miR-34a-3p-MiD pathway offers new therapeutic targets for PAH.


Assuntos
GTP Fosfo-Hidrolases/genética , Hipertensão Pulmonar/genética , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Miócitos de Músculo Liso/fisiologia , Fatores de Alongamento de Peptídeos/genética , Artéria Pulmonar/patologia , Telangiectasia/congênito , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Dinaminas , Epigênese Genética , Humanos , MicroRNAs/genética , Dinâmica Mitocondrial , Ligação Proteica , Hipertensão Arterial Pulmonar , RNA Interferente Pequeno/genética , Ratos , Telangiectasia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA