Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(37): 13242-13257, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37677134

RESUMO

Drying of binary sessile droplets consisting of ethanol and octamethyltrisiloxane on a high-energy surface is investigated. During the process of evaporation, the droplets undergo liquid-liquid phase separation, resulting in the appearance of microdroplets at the liquid-air interface, which subsequently violently burst. This phase separation is attributed to water vapor transfer into the droplet, which modifies the solubility and leads to the formation of a ternary mixture. The newly formed ternary mixture may undergo nucleation and growth or spinodal decomposition, depending on the droplet composition path. By control of the relative humidity of air, phase separation can be mitigated or even eliminated. The droplets also display high mobility and complex wetting behavior due to phase separation, with two contracting and two spreading stages. The mass loss experiments reveal that the droplets undergo three distinct drying stages with an enhanced evaporation rate observed during the phase separation stage. A modified diffusion-limited model was employed to predict the evaporation rate, accounting for the physiochemical changes during evaporation and proved to be consistent with experimental observations. The findings of this work enhance our understanding of a coupled fundamental process involving the evaporation of multicomponent mixtures, wetting, and phase separation.

2.
Soft Matter ; 19(44): 8483-8492, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37814797

RESUMO

Droplets containing polyvinylpyrrolidone (PVP) dissolved in ethanol display a distinctive scalloped pattern at the rim while spreading and drying on a high-energy surface. Two distinct spreading regimes are observed, leading to the formation of a thin film with a uniform height that extends from the original droplet. An experimental study indicates polymer accumulation at the edge containing trace water, resulting in a surface tension gradient across the droplet, enhancing the droplet's spreading. This fast-spreading film develops a ridge at the contact line and becomes unstable. The influence of evaporation within the droplet shows no significant effect on the wavelength of the instability. Instead, the magnitude of the surface tension gradient and the surface energy of the substrate emerge as the dominant factors influencing the instability. This observation is validated by saturating the environment surrounding the droplet with ethanol vapour to reduce evaporation or employing solvents with low vapour pressure. Additionally, PVP in ethanol droplets deposited on hydrophobic substrates demonstrate a stable and pinned contact line, contrasting the behaviour observed on high-energy surfaces. By identifying the critical overlap concentration of the polymer, the transitional threshold between the scalloped instability and ringlike morphology is determined. The scalloped instability can be suppressed by removing residual water from the solution, eliminating the surface tension gradient, indicating that Marangoni forces are the underlying cause of the observed instability. The long-wave evolution equation, assuming a constant Marangoni shear flow, accurately predicts the most unstable wavelength, demonstrating good agreement with experimental observations.

3.
Soft Matter ; 16(33): 7835-7844, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32756697

RESUMO

We investigate the shape, dimensions, and transformation pathways of micelles of linear sodium alkylbenzenesulfonate (NaLAS), a common anionic surfactant, in aqueous solution. Employing Small Angle Neutron Scattering (SANS) and surface tensiometry, we quantify the effects of surfactant concentration (0.6-15 wt%), temperature (5-40 °C) and added salt (≤0.35 M Na2SO4). Spherical micelles form at low NaLAS (≤2.6 wt%) concentration in water, and become elongated with increasing concentration and decreasing temperature. Addition of salt reduces the critical micelle concentration (CMC) and thus promotes the formation of micelles. At fixed NaLAS concentration, salt addition causes spherical micelles to grow into cylindrical micelles, and then multilamellar vesicles (MLVs), which we examine by SANS and cryo-TEM. Above a threshold salt concentration, the MLVs reach diameters of 100 s of nm to few µm, eventually causing precipitation. While the salt concentrations associated with the micelle-to-cylinder transformation increase only slightly with temperature, those required for the cylinder-to-MLV transformation exhibit a pronounced, linear temperature dependence, which we examine in detail. Our study establishes a solution structure map for this model anionic surfactant in water, quantifying the combined roles of concentration, temperature and salt, at practically relevant conditions.

4.
Soft Matter ; 14(10): 1759-1770, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29355865

RESUMO

The coupling of droplet microfluidics and Small Angle Neutron Scattering (SANS) is demonstrated with a range of model systems: isotopic solvent (H2O/D2O) mixtures, surfactant (sodium dodecyl sulfate, SDS) solutions and colloidal (silica) suspensions. Several droplet carrier phases are evaluated and fluorinated oil emerges as a suitable fluid with minimal neutron background scattering (commensurate with air), and excellent interfacial properties. The combined effects of flow dispersion and compositional averaging caused by the neutron beam footprint are evaluated in both continuous and droplet flows and an operational window is established. Systematic droplet-SANS dilution measurements of colloidal silica suspensions enable unprecedented quantification of form and structure factors, osmotic compressibility, enhanced by constrained global data fits. Contrast variation measurements with over 100 data points are readily carried out in 10-20 min timescales, and validated for colloidal silica of two sizes, in both continuous and droplet flows. While droplet microfluidics is established as an attractive platform for SANS, the compositional averaging imposed by large (∼1 cm) beam footprints can, under certain circumstances, make single phase, continuous flow a preferable option for low scattering systems. We propose simple guidelines to assess the suitability of either approach based on well-defined system parameters.

5.
Soft Matter ; 13(31): 5332-5340, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28702657

RESUMO

Linear and circular solvent penetration experiments are used to study the dissolution of anionic SLE3S surfactant mesophases in water. We show that a lamellar (Lα) phase in contact with water will transit through a series of cubic, hexagonal, and micellar phase bands with sharp interfaces identified from their optical textures. In both linear and circular geometries, the kinetics of front propagation and eventual dissolution are well described by diffusive penetration of water, and a simple model applies to both geometries, with a different effective diffusion coefficient for water Df as the only fitting parameter. Finally, we show a surprising variation of dissolution rates with initial surfactant concentration that can be well explained by assuming that the driving force for solvent penetration is the osmotic pressure difference between neat water and the aqueous fraction of the mesophase that is highly concentrated in surfactant counterions.

6.
Langmuir ; 32(23): 5852-61, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27196820

RESUMO

The structure and flow behavior of a concentrated aqueous solution (45 wt %) of the ubiquitous linear sodium alkylbenzenesulfonate (NaLAS) surfactant is investigated by microfluidic small-angle X-ray scattering (SAXS) at 70 °C. NaLAS is an intrinsically complex mixture of over 20 surfactant molecules, presenting coexisting micellar (L1) and lamellar (Lα) phases. Novel microfluidic devices were fabricated to ensure pressure and thermal resistance, ability to handle viscous fluids, and low SAXS background. Polarized light optical microscopy showed that the NaLAS solution exhibits wall slip in microchannels, with velocity profiles approaching plug flow. Microfluidic SAXS demonstrated the structural spatial heterogeneity of the system with a characteristic length scale of 50 nL. Using a statistical flow-SAXS analysis, we identified the micellar phase and multiple coexisting lamellar phases with a continuous distribution of d spacings between 37.5 and 39.5 Å. Additionally, we showed that the orientation of NaLAS lamellar phases is strongly affected by a single microfluidic constriction. The bilayers align parallel to the velocity field upon entering a constriction and perpendicular to it upon exiting. On the other hand, multilamellar vesicle phases are not affected under the same flow conditions. Our results demonstrate that despite the compositional complexity inherent to NaLAS, microfluidic SAXS can rigorously elucidate its structure and flow response.

7.
Phys Rev Lett ; 115(21): 218301, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636876

RESUMO

The mechanism of flow in glassy materials is interrogated using mechanical spectroscopy applied to model nearly hard sphere colloidal glasses during flow. Superimposing a small amplitude oscillatory motion orthogonal onto steady shear flow makes it possible to directly evaluate the effect of a steady state flow on the out-of-cage (α) relaxation as well as the in-cage motions. To this end, the crossover frequency deduced from the viscoelastic spectra is used as a direct measure of the inverse microstructural relaxation time, during flow. The latter is found to scale linearly with the rate of deformation. The microscopic mechanism of flow can then be identified as a convective cage release. Further insights are provided when the viscoelastic spectra at different shear rates are shifted to scale the alpha relaxation and produce a strain rate-orthogonal frequency superposition, the colloidal analogue of time temperature superposition in polymers with the flow strength playing the role of temperature. Whereas the scaling works well for the α relaxation, deviations are observed both at low and high frequencies. Brownian dynamics simulations point to the origins of these deviations; at high frequencies these are due to the deformation of the cages which slows down the short-time diffusion, while at low frequency, deviations are most probably caused by some mild hydroclustering.

8.
J Chem Phys ; 132(9): 091101, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20210381

RESUMO

Using x-ray photon correlation spectroscopy, we studied the dynamics in the nematic phase of a nanorod suspension. The collective diffusion coefficient in the plane perpendicular to the director varies sharply with the wave vector. Combining the structure factor and the diffusion coefficient, we find that the hydrodynamic function of the phase decreases by more than a factor of 10 when going from length scales comparable to the interparticle distance toward larger values. Thus, the collective dynamics of the nematic phase experiences strong and scale-dependent slowing down, in contrast with isotropic suspensions of slender rods or of spherical particles.

9.
Lab Chip ; 17(9): 1559-1569, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28379253

RESUMO

We report a microfluidic approach to perform small angle neutron scattering (SANS) measurements of contrast variation and matching, extensively employed in soft and biological matter research. We integrate a low scattering background microfluidic mixer and serpentine channel in a SANS beamline to yield a single phase, continuous flow, reconfigurable liquid cell. By contrast with conventional, sequential measurements of discrete (typically 4-6) solutions of varying isotopic solvent composition, our approach continually varies solution composition during SANS acquisition. We experimentally and computationally determine the effects of flow dispersion and neutron beam overillumination of microchannels in terms of the composition resolution and precision. The approach is demonstrated with model systems: H2O/D2O mixtures, a surfactant (sodium dodecyl sulfate, SDS), a triblock copolymer (pluronic F127), and silica nanoparticles (Ludox) in isotopic aqueous mixtures. The system is able to zoom into a composition window to refine contrast matching conditions, and robustly resolve solute structure and form factors by simultaneous fitting of scattering data with continuously varying contrast. We conclude by benchmarking our microflow-SANS with the discrete approach, in terms of volume required, composition resolution and (preparation and measurement) time required, proposing a leap forward in equilibrium, liquid solution phase mapping and contrast variation by SANS.

10.
J Phys Chem B ; 114(1): 220-7, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19968315

RESUMO

Using pulsed gradient spin-echo NMR, we studied molecular self-diffusion in aligned samples of a hybrid lyotropic lamellar L(alpha) phase. This composite organic-inorganic material was obtained by doping the lamellar phase of the nonionic surfactant Brij-30 with the [PW(12)O(40)](3-) polyoxometalate (POM). Both water and POM self-diffusion display a large anisotropy, as diffusion is severely restricted along the normal to the bilayers. Water diffusion in planes parallel to the bilayers does not depend on the POM concentration but depends on the lamellar period, which is due to a variable fraction of "bound" water molecules. POM diffusion in the hybrid L(alpha) phase is almost 2 orders of magnitude slower than in aqueous solution. Moreover, it is not at all affected by the thickness of the aqueous medium separating the bilayers. This proves that the POM nanoparticles do not freely diffuse in the interbilayer aqueous space but adsorb onto the PEG brushes that cover both sides of the surfactant bilayers.

11.
Langmuir ; 24(12): 6285-91, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18479154

RESUMO

This work reports the elaboration and structural study of new hybrid organic-inorganic materials constructed via the coupling of liquid-crystalline nonionic surfactants and polyoxometalates (POMs). X-ray scattering and polarized light microscopy demonstrate that these hybrid materials, highly loaded with POMs (up to 18 wt %), are nanocomposites of liquid-crystalline lamellar structure (Lalpha), with viscoelastic properties close to those of gels. The interpretation of X-ray scattering data strongly suggests that the POMs are located close to the terminal -OH groups of the nonionic surfactants, within the aqueous sublayers. Moreover, these materials exhibit a reversible photochromism associated to the photoreduction of the polyanion. The photoinduced mixed-valence behavior has been characterized through ESR and UV-visible-near-IR spectroscopies that demonstrate the presence of W(V) metal cations and of the characteristic intervalence charge transfer band in the near-IR region, respectively. These hybrid nanocomposites exhibit optical properties that may be useful for applications involving UV-light-sensitive coatings or liquid-crystal-based photochromic switches. From a more fundamental point of view, these hybrid materials should be very helpful models for the study of both the static and dynamic properties of nano-objects confined within soft lamellar structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA