Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 585(7825): 397-403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32610343

RESUMO

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Assuntos
Modelos Animais de Doenças , Proteína Proteolipídica de Mielina/deficiência , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/terapia , Animais , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Atividade Motora/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Mutação Puntual , Testes de Função Respiratória , Análise de Sobrevida
2.
Proc Natl Acad Sci U S A ; 110(10): 4075-80, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431182

RESUMO

Neurological diseases and trauma often cause demyelination, resulting in the disruption of axonal function and integrity. Endogenous remyelination promotes recovery, but the process is not well understood because no method exists to definitively distinguish regenerated from preexisting myelin. To date, remyelinated segments have been defined as anything abnormally short and thin, without empirical data to corroborate these morphological assumptions. To definitively identify regenerated myelin, we used a transgenic mouse with an inducible membrane-bound reporter and targeted Cre recombinase expression to a subset of glial progenitor cells after spinal cord injury, yielding remarkably clear visualization of spontaneously regenerated myelin in vivo. Early after injury, the mean length of sheaths regenerated by Schwann cells and oligodendrocytes (OLs) was significantly shorter than control, uninjured myelin, confirming past assumptions. However, OL-regenerated sheaths elongated progressively over 6 mo to approach control values. Moreover, OL-regenerated myelin thickness was not significantly different from control myelin at most time points after injury. Thus, many newly formed OL sheaths were neither thinner nor shorter than control myelin, vitiating accepted dogmas of what constitutes regenerated myelin. We conclude that remyelination, once thought to be static, is dynamic and elongates independently of axonal growth, in contrast to stretch-based mechanisms proposed in development. Further, without clear identification, past assessments have underestimated the extent and quality of regenerated myelin.


Assuntos
Bainha de Mielina/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Axônios/patologia , Axônios/fisiologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Bainha de Mielina/patologia , Plasticidade Neuronal/fisiologia , Oligodendroglia/patologia , Oligodendroglia/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células de Schwann/patologia , Células de Schwann/fisiologia , Traumatismos da Medula Espinal/patologia
3.
J Neurosci ; 32(15): 5120-5, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496557

RESUMO

Remyelination following spinal cord injury (SCI) is thought to be incomplete; demyelination is reported to persist chronically and is proposed as a compelling therapeutic target. Yet most reports do not distinguish between the myelin status of intact axons and injury-severed axons whose proximal stumps persist but provide no meaningful function. We previously found full remyelination of spared, intact rubrospinal axons caudal to the lesion in chronic mouse SCI. However, the clinical concept of chronically demyelinated spared axons remains controversial. Since mouse models may have limitations in clinical translation, we asked whether the capacity for full remyelination is conserved in clinically relevant chronic rat SCI. We determined myelin status by examining paranodal protein distribution on anterogradely labeled, intact corticospinal and rubrospinal axons throughout the extent of the lesion. Demyelination was evident on proximal stumps of severed axons, but not on intact axons. For the first time, we demonstrate that a majority of intact axons exhibit remyelination (at least one abnormally short internode, <100 µm). Remarkably, shortened internodes were significantly concentrated at the lesion epicenter and individual axons were thinned by 23% compared with their rostral and caudal zones. Mathematical modeling predicted a 25% decrease in conduction velocity at the lesion epicenter due to short internodes and axonal thinning. In conclusion, we do not find a large chronically demyelinated population to target with remyelination therapies. Interventions may be better focused on correcting structural or molecular abnormalities of regenerated myelin.


Assuntos
Axônios/patologia , Bainha de Mielina/patologia , Traumatismos da Medula Espinal/patologia , Animais , Vértebras Cervicais/lesões , Contusões/patologia , Doenças Desmielinizantes/patologia , Feminino , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Locomoção/fisiologia , Condução Nervosa/fisiologia , Tratos Piramidais/patologia , Coelhos , Ratos , Software , Vértebras Torácicas/lesões
4.
Cell Stem Cell ; 12(6): 713-26, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23602540

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease, characterized by motor neuron (MN) death, for which there are no truly effective treatments. Here, we describe a new small molecule survival screen carried out using MNs from both wild-type and mutant SOD1 mouse embryonic stem cells. Among the hits we found, kenpaullone had a particularly impressive ability to prolong the healthy survival of both types of MNs that can be attributed to its dual inhibition of GSK-3 and HGK kinases. Furthermore, kenpaullone also strongly improved the survival of human MNs derived from ALS-patient-induced pluripotent stem cells and was more active than either of two compounds, olesoxime and dexpramipexole, that recently failed in ALS clinical trials. Our studies demonstrate the value of a stem cell approach to drug discovery and point to a new paradigm for identification and preclinical testing of future ALS therapeutics.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Células-Tronco Embrionárias/citologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/patologia , Animais , Benzazepinas/química , Benzazepinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colestenonas/química , Colestenonas/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Indóis/química , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/enzimologia , Mutação , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-Atividade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA