Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Plant J ; 105(1): 79-92, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098711

RESUMO

Rapid and widespread evolution of multiple herbicide resistance in global weed species endowed by increased capacity to metabolize (degrade) herbicides (metabolic resistance) is a great threat to herbicide sustainability and global food production. Metabolic resistance in the economically damaging crop weed species Lolium rigidum is well known but a molecular understanding has been lacking. We purified a metabolic resistant (R) subset from a field evolved R L. rigidum population. The R, the herbicide susceptible (S) and derived F2 populations were used for candidate herbicide resistance gene discovery by RNA sequencing. A P450 gene CYP81A10v7 was identified with higher expression in R vs. S plants. Transgenic rice overexpressing this Lolium CYP81A10v7 gene became highly resistant to acetyl-coenzyme A carboxylase- and acetolactate synthase-inhibiting herbicides (diclofop-methyl, tralkoxydim, chlorsulfuron) and moderately resistant to hydroxyphenylpyruvate dioxygenase-inhibiting herbicide (mesotrione), photosystem II-inhibiting herbicides (atrazine and chlorotoluron) and the tubulin-inhibiting herbicide trifluralin. This wide cross-resistance profile to many dissimilar herbicides in CYP81A10v7 transgenic rice generally reflects what is evident in the R L. rigidum. This report clearly showed that a single P450 gene in a cross-pollinated weed species L. rigidum confers resistance to herbicides of at least five modes of action across seven herbicide chemistries.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Herbicidas , Lolium/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Cicloexanonas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Éteres Difenil Halogenados/metabolismo , Resistência a Herbicidas/genética , Herbicidas/metabolismo , Lolium/enzimologia , Lolium/genética , Lolium/metabolismo , Oryza , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
2.
Ann Bot ; 125(5): 821-832, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31646341

RESUMO

BACKGROUND AND AIMS: Resistance to the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) in wild radish (Raphanus raphanistrum) appears to be due to a complex, multifaceted mechanism possibly involving enhanced constitutive plant defence and alterations in auxin signalling. Based on a previous gene expression analysis highlighting the plasma membrane as being important for 2,4-D resistance, this study aimed to identify the components of the leaf plasma membrane proteome that contribute to resistance. METHODS: Isobaric tagging of peptides was used to compare the plasma membrane proteomes of a 2,4-D-susceptible and a 2,4-D-resistant wild radish population under control and 2,4-D-treated conditions. Eight differentially abundant proteins were then targeted for quantification in the plasma membranes of 13 wild radish populations (two susceptible, 11 resistant) using multiple reaction monitoring. KEY RESULTS: Two receptor-like kinases of unknown function (L-type lectin domain-containing receptor kinase IV.1-like and At1g51820-like) and the ATP-binding cassette transporter ABCB19, an auxin efflux transporter, were identified as being associated with auxinic herbicide resistance. The variability between wild radish populations suggests that the relative contributions of these candidates are different in the different populations. CONCLUSIONS: To date, no receptor-like kinases have been reported to play a role in 2,4-D resistance. The lectin-domain-containing kinase may be involved in perception of 2,4-D at the plasma membrane, but its ability to bind 2,4-D and the identity of its signalling partner(s) need to be confirmed experimentally. ABCB19 is known to export auxinic compounds, but its role in 2,4-D resistance in wild radish appears to be relatively minor.


Assuntos
Herbicidas/farmacologia , Raphanus/efeitos dos fármacos , Ácido 2,4-Diclorofenoxiacético , Membrana Celular/efeitos dos fármacos , Resistência a Herbicidas
3.
New Phytol ; 223(2): 532-547, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30737790

RESUMO

We reviewed the literature to understand the effects of glyphosate resistance on plant fitness at the molecular, biochemical and physiological levels. A number of correlations between enzyme characteristics and glyphosate resistance imply the existence of a plant fitness cost associated with resistance-conferring mutations in the glyphosate target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). These biochemical changes result in a tradeoff between the glyphosate resistance of the EPSPS enzyme and its catalytic activity. Mutations that endow the highest resistance are more likely to decrease catalytic activity by reducing the affinity of EPSPS for its natural substrate, and/or slowing the velocity of the enzyme reaction, and are thus very likely to endow a substantial plant fitness cost. Prediction of fitness costs associated with EPSPS gene amplification and overexpression can be more problematic. The validity of cost prediction based on the theory of evolution of gene expression and resource allocation has been cast into doubt by contradictory experimental evidence. Further research providing insights into the role of the EPSPS cassette in weed adaptation, and estimations of the energy budget involved in EPSPS amplification and overexpression are required to understand and predict the biochemical and physiological bases of the fitness cost of glyphosate resistance.


Assuntos
Glicina/análogos & derivados , Resistência a Herbicidas , Plantas/efeitos dos fármacos , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Evolução Biológica , Ecossistema , Glicina/toxicidade , Glifosato
4.
Ann Bot ; 122(4): 627-640, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-29893784

RESUMO

Background and Aims: Resistance to synthetic auxin herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) is increasing in weed populations worldwide, which is of concern given the recent introduction of synthetic auxin-resistant transgenic crops. Due to the complex mode of action of the auxinic herbicides, the mechanisms of evolved resistance remain largely uncharacterized. The aims of this study were to assess the level of diversity in resistance mechanisms in 11 populations of the problem weed Raphanus raphanistrum, and to use a high-throughput, whole-genome transcriptomic analysis on one resistant and one susceptible population to identify important changes in gene expression in response to 2,4-D. Methods: Levels of 2,4-D and dicamba (3,6-dichloro-2-methoxybenzoic acid) resistance were quantified in a dose-response study and the populations were further screened for auxin selectivity, 2,4-D translocation and metabolism, expression of key 2,4-D-responsive genes and activation of the mitogen-activated proein kinase (MAPK) pathway. Potential links between resistance levels and mechanisms were assessed using correlation analysis. Key Results: The transcriptomic study revealed early deployment of the plant defence response in the 2,4-D-treated resistant population, and there was a corresponding positive relationship between auxinic herbicide resistance and constitutive MAPK phosphorylation across all populations. Populations with shoot-wide translocation of 2,4-D had similar resistance levels to those with restricted translocation, suggesting that reduced translocation may not be as strong a resistance mechanism as originally thought. Differences in auxin selectivity between populations point to the likelihood of different resistance-conferring alterations in auxin signalling and/or perception in the different populations. Conclusions: 2,4-D resistance in wild radish appears to result from subtly different auxin signalling alterations in different populations, supplemented by an enhanced defence response and, in some cases, reduced 2,4-D translocation. This study highlights the dangers of applying knowledge generated from a few populations of a weed species to the species as a whole.


Assuntos
Resistência a Herbicidas , Herbicidas/farmacologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raphanus/fisiologia , Transdução de Sinais , Ácido 2,4-Diclorofenoxiacético/farmacologia , Dicamba/farmacologia , Raphanus/efeitos dos fármacos , Especificidade da Espécie
5.
Pestic Biochem Physiol ; 148: 74-80, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891380

RESUMO

The evolution of resistant weed populations in response to intensive herbicide selection pressure is a global issue. Resistance to post-emergence herbicides is widespread, whereas soil-applied pre-emergence herbicides can often remain effective. For example, in Australia pyroxasulfone is a new pre-emergence soil-applied herbicide which provides control of Lolium rigidum populations resistant to multiple post-emergence herbicide modes of action. A fundamental knowledge of the genetic basis of metabolic resistance in weeds is important for understanding plant evolution pathways under herbicide selection and sustaining long-term weed resistance management. In this study we define the mechanistic basis of resistance to pyroxasulfone in a L. rigidum population. TLC provides evidence that pyroxasulfone resistance is metabolism-based with approximately 88% of parental [14C]-labelled pyroxasulfone metabolized in resistant plants 24 h after the herbicide treatment. HPLC-MS allowed identification of several metabolites of pyroxasulfone formed via a glutathione (GSH) conjugation pathway in pyroxasulfone-resistant L. rigidum plants. However, the initial pyroxasulfone-glutathione conjugate was not found likely due to its labile nature. The observed constitutive over-expression from six to nine-fold of two putative resistance-endowing GST genes was associated with the pyroxasulfone resistance phenotype. The most logical conclusion, based on the data thus far available, is that rapid detoxification of pyroxasulfone mediates pyroxasulfone resistance in L. rigidum plants. Future research is warranted to confirm the hypothesis advanced by this study of rapid pyroxasulfone metabolism due to GSH conjugation mediated by GST over-expressed in pyroxasulfone-resistant plants which similarly leads to the production of distinctive GSH-pyroxasulfone metabolites in L. rigidum and wheat.


Assuntos
Resistência a Herbicidas/genética , Herbicidas/farmacologia , Isoxazóis/farmacologia , Lolium/efeitos dos fármacos , Plantas Daninhas/efeitos dos fármacos , Sulfonas/farmacologia , Cromatografia Líquida de Alta Pressão , Genes de Plantas , Glutationa/metabolismo , Glutationa Transferase/genética , Inativação Metabólica , Lolium/genética , Lolium/metabolismo , Espectrometria de Massas , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Triticum/metabolismo
6.
Plant Cell Environ ; 40(12): 3031-3042, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28910491

RESUMO

A novel glyphosate resistance double point mutation (T102I/P106S, TIPS) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene has been recently identified for the first time only in the weed species Eleusine indica. Quantification of plant resistance cost associated with the TIPS and the often reported glyphosate resistance single P106S mutation was performed. A significant resistance cost (50% in seed number currency) associated with the homozygous TIPS but not the homozygous P106S EPSPS variant was identified in E. indica plants. The resistance cost associated with the TIPS mutation escalated to 85% in plants under resource competition with rice crops. The resistance cost was not detected in nonhomozygous TIPS plants denoting the recessive nature of the cost associated with the TIPS allele. An excess of 11-fold more shikimate and sixfold more quinate in the shikimate pathway was detected in TIPS plants in the absence of glyphosate treatment compared to wild type, whereas no changes in these compounds were observed in P106S plants when compared to wild type. TIPS plants show altered metabolite levels in several other metabolic pathways that may account for the expression of the observed resistance cost.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Oryza/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Substituição de Aminoácidos , Glicina/farmacologia , Mutação , Oryza/efeitos dos fármacos , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glifosato
7.
Plant Physiol ; 167(4): 1440-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25717039

RESUMO

Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Eleusine/enzimologia , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Substituição de Aminoácidos , Evolução Biológica , Eleusine/efeitos dos fármacos , Eleusine/genética , Glicina/farmacologia , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glifosato
8.
J Exp Bot ; 67(11): 3223-35, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26994475

RESUMO

Resistance to auxinic herbicides is increasing in a range of dicotyledonous weed species, but in most cases the biochemical mechanism of resistance is unknown. Using (14)C-labelled herbicide, the mechanism of resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) in two wild radish (Raphanus raphanistrum L.) populations was identified as an inability to translocate 2,4-D out of the treated leaf. Although 2,4-D was metabolized in wild radish, and in a different manner to the well-characterized crop species wheat and bean, there was no difference in metabolism between the susceptible and resistant populations. Reduced translocation of 2,4-D in the latter was also not due to sequestration of the herbicide, or to reduced uptake by the leaf epidermis or mesophyll cells. Application of auxin efflux or ABCB transporter inhibitors to 2,4-D-susceptible plants caused a mimicking of the reduced-translocation resistance phenotype, suggesting that 2,4-D resistance in the populations under investigation could be due to an alteration in the activity of a plasma membrane ABCB-type auxin transporter responsible for facilitating long-distance transport of 2,4-D.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Raphanus/efeitos dos fármacos , Transporte Biológico Ativo , Raphanus/metabolismo
9.
Plant J ; 78(5): 865-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24654891

RESUMO

Weed control failures due to herbicide resistance are an increasing and worldwide problem that significantly affect crop yields. Metabolism-based herbicide resistance (referred to as metabolic resistance) in weeds is not well characterized at the genetic level. An RNA-Seq transcriptome analysis was used to find candidate genes that conferred metabolic resistance to the herbicide diclofop in a diclofop-resistant population (R) of the major global weed Lolium rigidum. A reference cDNA transcriptome (19 623 contigs) was assembled and assigned putative annotations. Global gene expression was measured using Illumina reads from untreated control, adjuvant-only control, and diclofop treatment of R and susceptible (S). Contigs that showed constitutive expression differences between untreated R and untreated S were selected for further validation analysis, including 11 contigs putatively annotated as cytochrome P450 (CytP450), glutathione transferase (GST), or glucosyltransferase (GT), and 17 additional contigs with annotations related to metabolism or signal transduction. In a forward genetics validation experiment, nine contigs had constitutive up-regulation in R individuals from a segregating F2 population, including three CytP450, one nitronate monooxygenase (NMO), three GST, and one GT. Principal component analysis using these nine contigs differentiated F2 -R from F2 -S individuals. In a physiological validation experiment in which 2,4-D pre-treatment induced diclofop protection in S individuals due to increased metabolism, seven of the nine genetically validated contigs were induced significantly. Four contigs (two CytP450, NMO, and GT) were consistently highly expressed in nine field-evolved metabolic resistant L. rigidum populations. These four contigs were strongly associated with the resistance phenotype and are major candidates for contributing to metabolic diclofop resistance.


Assuntos
Lolium/efeitos dos fármacos , Lolium/metabolismo , Éteres Difenil Halogenados/toxicidade , Resistência a Herbicidas/genética , Resistência a Herbicidas/fisiologia , Transcriptoma/genética
10.
J Exp Bot ; 66(15): 4711-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26019257

RESUMO

The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed.


Assuntos
Acetil-CoA Carboxilase/genética , Resistência a Herbicidas , Herbicidas/farmacologia , Lolium/efeitos dos fármacos , Proteínas de Plantas/genética , Acetil-CoA Carboxilase/metabolismo , Aptidão Genética , Cinética , Lolium/enzimologia , Lolium/genética , Lolium/crescimento & desenvolvimento , Mutação , Proteínas de Plantas/metabolismo
11.
Ann Bot ; 115(2): 293-301, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25471097

RESUMO

BACKGROUND AND AIMS: Dormancy in Lolium rigidum (annual ryegrass) seeds can be alleviated by warm stratification in the dark or by application of fluridone, an inhibitor of plant abscisic acid (ABA) biosynthesis via phytoene desaturase. However, germination and absolute ABA concentration are not particularly strongly correlated. The aim of this study was to determine if cytokinins of both plant and bacterial origin are involved in mediating dormancy status and in the response to fluridone. METHODS: Seeds with normal or greatly decreased (by dry heat pre-treatment) bacterial populations were stratified in the light or dark and in the presence or absence of fluridone in order to modify their dormancy status. Germination was assessed and seed cytokinin concentration and composition were measured in embryo-containing or embryo-free seed portions. KEY RESULTS: Seeds lacking bacteria were no longer able to lose dormancy in the dark unless supplied with exogenous gibberellin or fluridone. Although these seeds showed a dramatic switch from active cytokinin free bases to O-glucosylated storage forms, the concentrations of individual cytokinin species were only weakly correlated to dormancy status. However, cytokinins of apparently bacterial origin were affected by fluridone and light treatment of the seeds. CONCLUSIONS: It is probable that resident microflora contribute to dormancy status in L. rigidum seeds via a complex interaction between hormones of both plant and bacterial origin. This interaction needs to be taken into account in studies on endogenous seed hormones or the response of seeds to plant growth regulators.


Assuntos
Luz , Lolium , Microbiota/fisiologia , Dormência de Plantas , Piridonas/farmacologia , Sementes , Ácido Abscísico/antagonistas & inibidores , Citocininas/metabolismo , Herbicidas/farmacologia , Lolium/efeitos dos fármacos , Lolium/microbiologia , Lolium/fisiologia , Naproxeno/farmacologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Sementes/efeitos dos fármacos , Sementes/microbiologia , Sementes/fisiologia
12.
Planta ; 239(4): 793-801, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24385093

RESUMO

Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Amaranthus/enzimologia , Dosagem de Genes , Glicina/análogos & derivados , Herbicidas/farmacologia , Amaranthus/efeitos dos fármacos , Amaranthus/genética , Amaranthus/fisiologia , Biomassa , Evolução Molecular , Amplificação de Genes , Glicina/farmacologia , Resistência a Herbicidas , Glifosato
13.
Pest Manag Sci ; 79(4): 1528-1537, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36527683

RESUMO

BACKGROUND: We have previously demonstrated that an aldo-keto reductase (AKR) from Echinochloa colona (EcAKR4-1) can metabolize glyphosate and confers glyphosate resistance. This study aims to investigate if the EcAKR4-1 orthologs from Lolium rigidum also play a role in glyphosate resistance in non-target-site based, glyphosate-resistant (R) L. rigidum populations from Western Australia. RESULTS: The full-length L. rigidum AKR gene (LrAKR4C10) orthologous to EcAKR4-1, together with a distinct LrAKR1, were cloned from plants of a glyphosate-susceptible (S) (VLR1) and three glyphosate R L. rigidum populations (WALR50, WALR60 and WALR70). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) results showed that basal expression levels of the two LrAKR genes did not differ between the R and S populations, but their expression was significantly induced by glyphosate (up to 4.3-fold) or 2,4-D treatment (up to 3.4-fold) in R populations. Escherichia coli cells transformed respectively with LrAKR4C10 and LrAKR1 were more tolerant to glyphosate. Rice (Oryza sativa) seedlings overexpressing each of the two LrAKR gene survived glyphosate rates that were lethal to the green fluorescence protein (GFP) control plants. Structural modeling predicts a similar way of glyphosate binding and detoxification by LrAKR4C10 and EcAKR4-1, but an alternative way of glyphosate binding by LrAKR1. Relatively lower capacity of the two LrAKRs in conferring glyphosate resistance than the known EcAKR4-1 was discussed in relation to structural interaction. CONCLUSION: Glyphosate-induced higher expression of the two LrAKR genes in L. rigidum populations contributes to a moderate level of glyphosate resistance likely through enhanced glyphosate metabolism. The herbicide 2,4-D can also induce the LrAKR expression, indicating the potential antagonistic effect of 2,4-D to glyphosate. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Herbicidas , Lolium , Aldo-Ceto Redutases/metabolismo , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Glifosato
14.
Ann Bot ; 110(8): 1641-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23002268

RESUMO

BACKGROUND AND AIMS: α-Amylase in grass caryopses (seeds) is usually expressed upon commencement of germination and is rarely seen in dry, mature seeds. A heat-stable α-amylase activity was unexpectedly selected for expression in dry annual ryegrass (Lolium rigidum) seeds during targeted selection for low primary dormancy. The aim of this study was to characterize this constitutive activity biochemically and determine if its presence conferred insensitivity to the germination inhibitors abscisic acid and benzoxazolinone. METHODS: α-Amylase activity in developing, mature and germinating seeds from the selected (low-dormancy) and a field-collected (dormant) population was characterized by native activity PAGE. The response of seed germination and α-amylase activity to abscisic acid and benzoxazolinone was assessed. Using an alginate affinity matrix, α-amylase was purified from dry and germinating seeds for analysis of its enzymatic properties. KEY RESULTS: The constitutive α-amylase activity appeared late during seed development and was mainly localized in the aleurone; in germinating seeds, this activity was responsive to both glucose and gibberellin. It migrated differently on native PAGE compared with the major activities in germinating seeds of the dormant population, but the enzymatic properties of α-amylase purified from the low-dormancy and dormant seeds were largely indistinguishable. Seed imbibition on benzoxazolinone had little effect on the low-dormancy seeds but greatly inhibited germination and α-amylase activity in the dormant population. CONCLUSIONS: The constitutive α-amylase activity in annual ryegrass seeds selected for low dormancy is electrophoretically different from that in germinating seeds and its presence confers insensitivity to benzoxazolinone. The concurrent selection of low dormancy and constitutive α-amylase activity may help to enhance seedling establishment under competitive conditions.


Assuntos
Glucose/metabolismo , Lolium/enzimologia , Dormência de Plantas , Sementes/enzimologia , alfa-Amilases/metabolismo , Ácido Abscísico/farmacologia , Eletroforese em Gel Bidimensional , Germinação , Isoenzimas , Cinética , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Lolium/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/genética , alfa-Amilases/isolamento & purificação
15.
Pest Manag Sci ; 78(4): 1547-1554, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981627

RESUMO

BACKGROUND: Lolium rigidum is the most important weed in Australian agriculture and pre-emergence dinitroaniline herbicides (e.g., trifluralin) are widely and persistently used for Lolium control. Consequently, evolution of resistance to dinitroaniline herbicides has been increasingly reported. Resistance-endowing target-site α-tubulin gene mutations are identified with varying frequency. This study investigated the putative fitness cost associated with the common resistance mutation Val-202-Phe and the rare resistance mutation Arg-243-Met causing helical plant growth. RESULTS: Results showed a deleterious effect of Arg-243-Met on fitness when plants are homozygous for this mutation. This was evidenced as high plant mortality, severely diminished root and aboveground vegetative growth (lower relative growth rate), and very poor fecundity compared with the wild-type, which led to a nearly lethal fitness cost of >99.9% in competition with a wheat crop. A fitness penalty in vegetative growth was evident, but to a much lesser extent, in plants heterozygous for the Arg-243-Met mutation. By contrast, plants possessing the Val-202-Phe mutation exhibited a fitness advantage in vegetative and reproductive growth. CONCLUSION: The α-tubulin mutations Arg-243-Met and Val-202-Phe have contrasting effects on fitness. These results help understand the absence of plants homozygous for the Arg-243-Met mutation and the high frequency of plants carrying the Val-202-Phe mutation in dinitroaniline-resistant L. rigidum populations. The α-tubulin Arg-243-Met mutation can have an exceptional fitness cost with nearly lethal effects on resistant L. rigidum plants. © 2022 Society of Chemical Industry.


Assuntos
Herbicidas , Lolium , Austrália , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Trifluralina/farmacologia
16.
Pest Manag Sci ; 78(11): 4764-4773, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35904507

RESUMO

BACKGROUND: Eleusine indica (L.) Gaertn. (goosegrass) is a major weed in global cropping systems. It has evolved resistance to glyphosate due to single Pro-106-Ser (P106S) or double Thr-102-Ile + Pro-106-Ser (TIPS) EPSPS target site mutations. Here, experiments were conducted to evaluate the single effect of soybean competition and its combined effect with a glyphosate field dose (1080 g ae ha-1 ) on the growth and fitness of plants carrying these glyphosate resistance endowing target site mutations. RESULTS: TIPS E. indica plants are highly glyphosate-resistant but the double mutation endows a substantial fitness cost. The TIPS fitness penalty increased under the effect of soybean competition resulting in a cost of 95%, 95% and 96% in terms of, respectively, vegetative growth, seed mass and seed number investment. Glyphosate treatment of these glyphosate-resistant TIPS plants showed an increase in growth relative to those without glyphosate. Conversely, for the P106S moderate glyphosate resistance mutation, glyphosate treatment alone reduced survival rate, vegetative growth, aboveground biomass (34%), seed mass (48%) and number (52%) of P106S plants relative to the glyphosate nontreated plants. However, under the combined effects of both soybean competition and the field-recommended glyphosate dose, vegetative growth, aboveground biomass, seed mass and number of P106S and TIPS plants were substantially limited (by ≤99%). CONCLUSION: The ecological environment imposed by intense competition from a soybean crop sets a significant constraint for the landscape-level increase of both the E. indica single and double glyphosate resistance mutations in the agroecosystem and highlights the key role of crop competition in limiting the population growth of weeds, whether they are herbicide-resistant or susceptible. © 2022 Society of Chemical Industry.


Assuntos
Eleusine , Fabaceae , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Eleusine/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Glycine max/genética , Glifosato
17.
J Exp Bot ; 62(3): 1037-47, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974739

RESUMO

Seed dormancy in wild Lolium rigidum Gaud (annual ryegrass) populations is highly variable and not well characterized at the biochemical level. To identify some of the determinants of dormancy level in these seeds, the proteomes of subpopulations selected for low and high levels of primary dormancy were compared by two-dimensional polyacrylamide gel electrophoresis of extracts from mature, dry seeds. High-dormancy seeds showed higher expression of small heat shock proteins, enolase, and glyoxalase I than the low-dormancy seeds. The functional relevance of these differences in protein expression was confirmed by the fact that high-dormancy seeds were more tolerant to high temperatures imposed at imbibition and had consistently higher glyoxalase I activity over 0-42 d dark stratification. Higher expression of a putative glutathione peroxidase in low-dormancy seeds was not accompanied by higher activity, but these seeds had a slightly more oxidized glutathione pool and higher total peroxidase activity. Overall, these biochemical and physiological differences suggest that L. rigidum seeds selected for low dormancy are more prepared for rapid germination via peroxidase-mediated cell wall weakening, whilst seeds selected for high dormancy are constitutively prepared to survive environmental stresses, even in the absence of stress during seed development.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Lolium/fisiologia , Peroxidase/metabolismo , Dormência de Plantas , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Lolium/química , Lolium/enzimologia , Lolium/genética , Peroxidase/química , Peroxidase/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sementes/química , Sementes/enzimologia , Sementes/genética
18.
Ann Bot ; 108(5): 933-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821831

RESUMO

BACKGROUND AND AIMS: Karrikinolide (KAR(1)) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR(1) is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR(1), and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR(1) may be present in physiologically dormant seeds but may not be expressed under all circumstances. METHODS: Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR(1) when freshly collected and following simulated and natural dormancy alleviation, which included wet-dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. KEY RESULTS: Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR(1) when the seeds were fresh, and the remaining species became responsive to KAR(1) following wet-dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR(1), with the majority of species germinating better in darkness. Germination with and without KAR(1) fluctuated seasonally throughout the seed burial trial. CONCLUSIONS: KAR(1) responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR(1), and a response to KAR(1) can be induced. Three response types for generalizing KAR(1) responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR(1) were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for future application of KAR(1) in weed management.


Assuntos
Brassicaceae/efeitos dos fármacos , Furanos/farmacologia , Germinação/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Plantas Daninhas/crescimento & desenvolvimento , Piranos/farmacologia , Sementes/efeitos dos fármacos , Brassica/efeitos dos fármacos , Brassica/fisiologia , Brassicaceae/fisiologia , Escuridão , Lepidium/efeitos dos fármacos , Lepidium/fisiologia , Luz , Dormência de Plantas/efeitos dos fármacos , Raphanus/efeitos dos fármacos , Raphanus/fisiologia , Temperatura , Austrália Ocidental
19.
Evol Appl ; 14(6): 1635-1645, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34178109

RESUMO

Concurrent natural evolution of glyphosate resistance single- and double-point EPSPS mutations in weed species provides an opportunity for the estimation of resistance fitness benefits and prediction of equilibrium resistance frequencies in environments under glyphosate selection. Assessment of glyphosate resistance benefit was conducted for the most commonly identified single Pro-106-Ser and less-frequent double TIPS mutations in the EPSPS gene evolved in the global damaging weed Eleusine indica. Under glyphosate selection at the field dose, plants with the single Pro-106-Ser mutation at homozygous state (P106S-rr) showed reduced survival and compromised vegetative growth and fecundity compared with TIPS plants. Whereas both homozygous (TIPS-RR) and compound heterozygous (TIPS-Rr) plants with the double TIPS resistance mutation displayed similar survival rates when exposed to glyphosate, a significantly higher fecundity in the currency of seed number was observed in TIPS-Rr than TIPS-RR plants. The highest plant fitness benefit was associated with the heterozygous TIPS-Rr mutation, whereas plants with the homozygous Pro-106-Ser and TIPS mutations exhibited, respectively, 31% and 39% of the fitness benefit revealed by the TIPS-Rr plants. Populations are predicted to reach stable allelic and genotypic frequencies after 20 years of glyphosate selection at which the WT allele is lost and the stable genotypic polymorphism is comprised by 2% of heterozygous TIPS-Rr, 52% of homozygous TIPS-RR and 46% of homozygous P106S-rr. The high inbreeding nature of E. indica is responsible for the expected frequency decrease in the fittest TIPS-Rr in favour of the homozygous TIPS-RR and P106S-rr. Mutated alleles associated with the glyphosate resistance EPSPS single EPSPS Pro-106-Ser and double TIPS mutations confer contrasting fitness benefits to E. indica under glyphosate treatment and therefore are expected to exhibit contrasting evolution rates in cropping systems under recurrent glyphosate selection.

20.
Pest Manag Sci ; 77(1): 194-201, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32652760

RESUMO

BACKGROUND: Barnyardgrass (Echinochloa spp.) is a global weed in rice fields. Quinclorac is commonly used to control barnyardgrass. However, due to persistent use, quinclorac resistance has evolved. We obtained quinclorac-susceptible (QS) and -resistant (QR1, QR2) lines from the progeny of a single resistant E. crus-pavonis for a resistance mechanism study. RESULTS: Line QR1 exhibited resistance to high quinclorac rates (up to 6400 g ha-1 ), whereas line QR2 exhibited a resistance/susceptibility segregation ratio of 3:1 at the field or lower rates (400, 100 g ha-1 ). Intriguingly, a lower level of 14 C-quinclorac metabolism and hence a higher level of 14 C-quinclorac translocation was observed in QR1 than QS plants. The basal expression levels of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase 2 (ACO2) genes did not differ significantly between the QR1 and QS lines. However, more expression of ACS and ACO genes was induced by quinclorac treatment in QS than in QR1. Basal levels of ß-cyanoalanine synthase (ß-CAS) gene expression were similar in QS and QR1 plants, but a greater level of down-regulation was detected in QS than in QR1 plants after quinclorac treatment. CONCLUSION: These results indicate QR plants are less responsive to quinclorac than QS plants in terms of up-regulating quinclorac metabolism and ethylene synthesis. Resistance in this E. crus-pavonis line is likely controlled by a single major gene, involving possibly an alteration in auxin signal perception/transduction to the ethylene biosynthesis pathway. The ß-CAS is unlikely to play a major role in quinclorac resistance in this particular population.


Assuntos
Echinochloa , Herbicidas , Oryza , China , Echinochloa/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Oryza/genética , Quinolinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA