Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 847, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256601

RESUMO

BACKGROUND: Listeria (L.) monocytogenes strains show a high diversity regarding stress tolerance and virulence potential. Genome studies have mainly focused on specific sequence types (STs) predominantly associated with either food or human listeriosis. This study focused on the prevalent ST155, showing equal distribution among clinical and food isolates. We evaluated the virulence potential of 20 ST155 strains and performed comparative genomic analysis of 130 ST155 strains isolated from food, food processing environments and human listeriosis cases in different countries and years. RESULTS: The in vitro virulence assays using human intestinal epithelial Caco2 and hepatocytic HEPG2 cells showed an impaired virulence phenotype for six of the 20 selected ST155 strains. Genome analysis revealed no distinct clustering of strains from the same source category (food, food processing environment, and clinical isolates). All strains harbored an intact inlA and inlB locus, except four strains, which had an internal deletion in the inlA gene. All strains harbored LIPI-1, but prfA was present in a longer variant in six strains, all showing impaired virulence. The longer PrfA variant resulted in lower expression of inlA, inlB, and prfA, and no expression of hly and actA. Regarding stress-related gene content, SSI-1 was present, whereas qacH was absent in all strains. 34.6% of the strains harbored a plasmid. All but one ST155 plasmids showed high conservation and harbored cadA2, bcrABC, and a triphenylmethane reductase. CONCLUSIONS: This study contributes to an enhanced understanding of L. monocytogenes ST155 strains, being equally distributed among isolates from humans, food, and food processing environments. The conservation of the present genetic traits and the absence of unique inherent genetic features makes these types of STs especially interesting since they are apparently equally adapted to the conditions in food processing environments, as well as in food as to the human host environment. However, a ST155-specific mutation resulting in a longer PrfA variant impaired the virulence potential of several ST155 strains.


Assuntos
Listeria monocytogenes , Listeriose , Proteínas de Bactérias , Células CACO-2 , Microbiologia de Alimentos , Genômica , Humanos , Listeria monocytogenes/genética , Virulência/genética , Fatores de Virulência/genética
2.
Int J Food Microbiol ; 410: 110479, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37977080

RESUMO

Listeria (L.) monocytogenes is of global concern for food safety as the listeriosis-causing pathogen is widely distributed in the food processing environments, where it can survive for a long time. Frozen vegetables contaminated with L. monocytogenes were recently identified as the source of two large listeriosis outbreaks in the EU and US. So far, only a few studies have investigated the occurrence and behavior of Listeria in frozen vegetables and the associated processing environment. This study investigates the occurrence of L. monocytogenes and other Listeria spp. in a frozen vegetable processing environment and in frozen vegetable products. Using whole genome sequencing (WGS), the distribution of sequence types (MLST-STs) and core genome sequence types (cgMLST-CT) of L. monocytogenes were assessed, and in-house clones were identified. Comparative genomic analyses and phenotypical characterization of the different MLST-STs and isolates were performed, including growth ability under low temperatures, as well as survival of freeze-thaw cycles. Listeria were widely disseminated in the processing environment and five in-house clones namely ST451-CT4117, ST20-CT3737, ST8-CT1349, ST8-CT6243, ST224-CT5623 were identified among L. monocytogenes isolates present in environmental swab samples. Subsequently, the identified in-house clones were also detected in product samples. Conveyor belts were a major source of contamination in the processing environment. A wide repertoire of stress resistance markers supported the colonization and survival of L. monocytogenes in the frozen vegetable processing facility. The presence of ArgB was significantly associated with in-house clones. Significant differences were also observed in the growth rate between different MLST-STs at low temperatures (4 °C and 10 °C), but not between in-house and non-in-house isolates. All isolates harbored major virulence genes such as full length InlA and InlB and LIPI-1, yet there were differences between MLST-STs in the genomic content. The results of this study demonstrate that WGS is a strong tool for tracing contamination sources and transmission routes, and for identifying in-house clones. Further research targeting the co-occurring microbiota and the presence of biofilms is needed to fully understand the mechanism of colonization and persistence in a food processing environment.


Assuntos
Listeria monocytogenes , Listeria , Listeriose , Verduras , Tipagem de Sequências Multilocus , Microbiologia de Alimentos , Listeriose/epidemiologia , Listeria/genética
3.
Fluids Barriers CNS ; 17(1): 19, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138745

RESUMO

BACKGROUND: The blood-brain barrier (BBB) is altered in several diseases of the central nervous system. For example, the breakdown of the BBB during cerebral ischemia in stroke or traumatic brain injury is a hallmark of the diseases' progression. This functional damage is one key event which is attempted to be mimicked in in vitro models. Recent studies showed the pivotal role of micro-environmental cells such as astrocytes for this barrier damage in mouse stroke in vitro models. The aim of this study was to evaluate the role of micro-environmental cells for the functional, paracellular breakdown in a human BBB cerebral ischemia in vitro model accompanied by a transcriptional analysis. METHODS: Transwell models with human brain endothelial cell line hCMEC/D3 in mono-culture or co-culture with human primary astrocytes and pericytes or rat glioma cell line C6 were subjected to oxygen/glucose deprivation (OGD). Changes of transendothelial electrical resistance (TEER) and FITC-dextran 4000 permeability were recorded as measures for paracellular tightness. In addition, qPCR and high-throughput qPCR Barrier chips were applied to investigate the changes of the mRNA expression of 38 relevant, expressed barrier targets (tight junctions, ABC-transporters) by different treatments. RESULTS: In contrast to the mono-culture, the co-cultivation with human primary astrocytes/pericytes or glioma C6 cells resulted in a significantly increased paracellular permeability after 5 h OGD. This indicated the pivotal role of micro-environmental cells for BBB breakdown in the human model. Hierarchical cluster analysis of qPCR data revealed differently, but also commonly regulated clustered targets dependent on medium exchange, serum reduction, hydrocortisone addition and co-cultivations. CONCLUSIONS: The co-cultivation with micro-environmental cells is necessary to achieve a functional breakdown of the BBB in the cerebral ischemia model within an in vivo relevant time window. Comprehensive studies by qPCR revealed that distinct expression clusters of barrier markers exist and that these are regulated by different treatments (even by growth medium change) indicating that controls for single cell culture manipulation steps are crucial to understand the observed effects properly.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Células Endoteliais , Perfilação da Expressão Gênica , Acidente Vascular Cerebral , Animais , Técnicas de Cultura de Células , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Ratos
4.
Int J Food Microbiol ; 328: 108668, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32474228

RESUMO

Biofilms are comprised of microorganisms embedded in a self-produced matrix that normally adhere to a surface. In the food processing environment they are suggested to be a source of contamination leading to food spoilage or the transmission of food-borne pathogens. To date, research has mainly focused on the presence of (biofilm-forming) bacteria within food processing environments, without measuring the associated biofilm matrix components. Here, we assessed the presence of biofilms within a meat processing environment, processing pork, poultry and beef, by the detection of microorganisms and at least two biofilm matrix components. Sampling included 47 food contact surfaces and 61 non-food contact surfaces from eleven rooms within an Austrian meat processing plant, either during operation or after cleaning and disinfection. The 108 samples were analysed for the presence of microorganisms by cultivation and targeted quantitative real-time PCR based on 16S rRNA. Furthermore, the presence of the major matrix components carbohydrates, extracellular DNA and proteins was evaluated. Overall, we identified ten biofilm hotspots, among them seven of which were sampled during operation and three after cleaning and disinfection. Five biofilms were detected on food contact surfaces (cutters and associated equipment and a screw conveyor) and five on non-food contact surfaces (drains and water hoses) resulting in 9.3 % of the sites being classified as biofilm positive. From these biofilm positive samples, we cultivated bacteria of 29 different genera. The most prevalent bacteria belonged to the genera Brochothrix (present in 80 % of biofilms), Pseudomonas and Psychrobacter (isolated from 70 % biofilms). From each biofilm we isolated bacteria from four to twelve different genera, indicating the presence of multi-species biofilms. This work ultimately determined the presence of multi-species biofilms within the meat processing environment, thereby identifying various sources of potential contamination. Especially the identification of biofilms in water hoses and associated parts highlights the need of a frequent monitoring at these sites. The knowledge gained about the presence and composition of biofilms (i.e. chemical and microbiological) will help to prevent and reduce biofilm formation within food processing environments.


Assuntos
Brochothrix/isolamento & purificação , Manipulação de Alimentos , Carne/microbiologia , Pseudomonas/isolamento & purificação , Psychrobacter/isolamento & purificação , Animais , Áustria , Biofilmes/classificação , Biofilmes/crescimento & desenvolvimento , Bovinos , Desinfecção/métodos , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Aves Domésticas/microbiologia , RNA Ribossômico 16S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA