Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 78(Supplement_2): S117-S125, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662702

RESUMO

BACKGROUND: Lymphatic filariasis (LF) is a debilitating, poverty-promoting, neglected tropical disease (NTD) targeted for worldwide elimination as a public health problem (EPHP) by 2030. Evaluating progress towards this target for national programmes is challenging, due to differences in disease transmission and interventions at the subnational level. Mathematical models can help address these challenges by capturing spatial heterogeneities and evaluating progress towards LF elimination and how different interventions could be leveraged to achieve elimination by 2030. METHODS: Here we used a novel approach to combine historical geo-spatial disease prevalence maps of LF in Ethiopia with 3 contemporary disease transmission models to project trends in infection under different intervention scenarios at subnational level. RESULTS: Our findings show that local context, particularly the coverage of interventions, is an important determinant for the success of control and elimination programmes. Furthermore, although current strategies seem sufficient to achieve LF elimination by 2030, some areas may benefit from the implementation of alternative strategies, such as using enhanced coverage or increased frequency, to accelerate progress towards the 2030 targets. CONCLUSIONS: The combination of geospatial disease prevalence maps of LF with transmission models and intervention histories enables the projection of trends in infection at the subnational level under different control scenarios in Ethiopia. This approach, which adapts transmission models to local settings, may be useful to inform the design of optimal interventions at the subnational level in other LF endemic regions.


Assuntos
Erradicação de Doenças , Filariose Linfática , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Filariose Linfática/transmissão , Etiópia/epidemiologia , Humanos , Prevalência , Modelos Teóricos , Política de Saúde
2.
Clin Infect Dis ; 78(Supplement_2): S108-S116, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662704

RESUMO

BACKGROUND: Lymphatic filariasis (LF) is a neglected tropical disease targeted for elimination as a public health problem by 2030. Although mass treatments have led to huge reductions in LF prevalence, some countries or regions may find it difficult to achieve elimination by 2030 owing to various factors, including local differences in transmission. Subnational projections of intervention impact are a useful tool in understanding these dynamics, but correctly characterizing their uncertainty is challenging. METHODS: We developed a computationally feasible framework for providing subnational projections for LF across 44 sub-Saharan African countries using ensemble models, guided by historical control data, to allow assessment of the role of subnational heterogeneities in global goal achievement. Projected scenarios include ongoing annual treatment from 2018 to 2030, enhanced coverage, and biannual treatment. RESULTS: Our projections suggest that progress is likely to continue well. However, highly endemic locations currently deploying strategies with the lower World Health Organization recommended coverage (65%) and frequency (annual) are expected to have slow decreases in prevalence. Increasing intervention frequency or coverage can accelerate progress by up to 5 or 6 years, respectively. CONCLUSIONS: While projections based on baseline data have limitations, our methodological advancements provide assessments of potential bottlenecks for the global goals for LF arising from subnational heterogeneities. In particular, areas with high baseline prevalence may face challenges in achieving the 2030 goals, extending the "tail" of interventions. Enhancing intervention frequency and/or coverage will accelerate progress. Our approach facilitates preimplementation assessments of the impact of local interventions and is applicable to other regions and neglected tropical diseases.


Assuntos
Filariose Linfática , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Humanos , África Subsaariana/epidemiologia , Prevalência , Erradicação de Doenças/métodos , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/prevenção & controle , Filaricidas/uso terapêutico
3.
Proc Biol Sci ; 291(2024): 20240449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864320

RESUMO

The WHO aims to eliminate schistosomiasis as a public health problem by 2030. However, standard morbidity measures poorly correlate to infection intensities, hindering disease monitoring and evaluation. This is exacerbated by insufficient evidence on Schistosoma's impact on health-related quality of life (HRQoL). We conducted community-based cross-sectional surveys and parasitological examinations in moderate-to-high Schistosoma mansoni endemic communities in Uganda. We calculated parasitic infections and used EQ-5D instruments to estimate and compare HRQoL utilities in these populations. We further employed Tobit/linear regression models to predict HRQoL determinants. Two-thirds of the 560 participants were diagnosed with parasitic infection(s), 49% having S. mansoni. No significant negative association was observed between HRQoL and S. mansoni infection status/intensity. However, severity of pain urinating (ß = -0.106; s.e. = 0.043) and body swelling (ß = -0.326; s.e. = 0.005), increasing age (ß = -0.016; s.e. = 0.033), reduced socio-economic status (ß = 0.128; s.e. = 0.032), and being unemployed predicted lower HRQoL. Symptom severity and socio-economic status were better predictors of short-term HRQoL than current S. mansoni infection status/intensity. This is key to disentangling the link between infection(s) and short-term health outcomes, and highlights the complexity of correlating current infection(s) with long-term morbidity. Further evidence is needed on long-term schistosomiasis-associated HRQoL, health and economic outcomes to inform the case for upfront investments in schistosomiasis interventions.


Assuntos
Qualidade de Vida , Schistosoma mansoni , Esquistossomose mansoni , Esquistossomose mansoni/epidemiologia , Uganda/epidemiologia , Humanos , Estudos Transversais , Feminino , Masculino , Animais , Schistosoma mansoni/fisiologia , Adulto , Adolescente , Criança , Pessoa de Meia-Idade , Adulto Jovem
4.
Clin Infect Dis ; 74(9): 1557-1563, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34358299

RESUMO

BACKGROUND: Despite decades of interventions, 240 million people have schistosomiasis. Infections cannot be directly observed, and egg-based Kato-Katz thick smears lack sensitivity, affected treatment efficacy and reinfection rate estimates. The point-of-care circulating cathodic antigen (referred to from here as POC-CCA+) test is advocated as an improvement on the Kato-Katz method, but improved estimates are limited by ambiguities in the interpretation of trace results. METHOD: We collected repeated Kato-Katz egg counts from 210 school-aged children and scored POC-CCA tests according to the manufacturer's guidelines (referred to from here as POC-CCA+) and the externally developed G score. We used hidden Markov models parameterized with Kato-Katz; Kato-Katz and POC-CCA+; and Kato-Katz and G-Scores, inferring latent clearance and reinfection probabilities at four timepoints over six-months through a more formal statistical reconciliation of these diagnostics than previously conducted. Our approach required minimal but robust assumptions regarding trace interpretations. RESULTS: Antigen-based models estimated higher infection prevalence across all timepoints compared with the Kato-Katz model, corresponding to lower clearance and higher reinfection estimates. Specifically, pre-treatment prevalence estimates were 85% (Kato-Katz; 95% CI: 79%-92%), 99% (POC-CCA+; 97%-100%) and 98% (G-Score; 95%-100%). Post-treatment, 93% (Kato-Katz; 88%-96%), 72% (POC-CCA+; 64%-79%) and 65% (G-Score; 57%-73%) of those infected were estimated to clear infection. Of those who cleared infection, 35% (Kato-Katz; 27%-42%), 51% (POC-CCA+; 41%-62%) and 44% (G-Score; 33%-55%) were estimated to have been reinfected by 9-weeks. CONCLUSIONS: Treatment impact was shorter-lived than Kato-Katz-based estimates alone suggested, with lower clearance and rapid reinfection. At 3 weeks after treatment, longer-term clearance dynamics are captured. At 9 weeks after treatment, reinfection was captured, but failed clearance could not be distinguished from rapid reinfection. Therefore, frequent sampling is required to understand these important epidemiological dynamics.


Assuntos
Schistosoma mansoni , Esquistossomose mansoni , Animais , Antígenos de Helmintos , Criança , Fezes , Humanos , Prevalência , Reinfecção/diagnóstico , Reinfecção/epidemiologia , Esquistossomose mansoni/diagnóstico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/epidemiologia , Sensibilidade e Especificidade
5.
Antimicrob Agents Chemother ; 66(5): e0168721, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35404076

RESUMO

Campylobacter jejuni and Campylobacter coli are important bacterial causes of human foodborne illness. Despite several years of reduced antibiotics usage in livestock production in the United Kingdom (UK) and United States (US), a high prevalence of antimicrobial resistance (AMR) persists in Campylobacter. Both countries have instigated genome sequencing-based surveillance programs for Campylobacter, and in this study, we have identified AMR genes in 32,256 C. jejuni and 8,776 C. coli publicly available genome sequences to compare the prevalence and trends of AMR in Campylobacter isolated in the UK and US between 2001 and 2018. AMR markers were detected in 68% of C. coli and 53% of C. jejuni isolates, with 15% of C. coli isolates being multidrug resistant (MDR), compared to only 2% of C. jejuni isolates. The prevalence of aminoglycoside, macrolide, quinolone, and tetracycline resistance remained fairly stable from 2001 to 2018 in both C. jejuni and C. coli, but statistically significant differences were observed between the UK and US. There was a statistically significant higher prevalence of aminoglycoside and tetracycline resistance for US C. coli and C. jejuni isolates and macrolide resistance for US C. coli isolates. In contrast, UK C. coli and C. jejuni isolates showed a significantly higher prevalence of quinolone resistance. Specific multilocus sequence type (MLST) clonal complexes (e.g., ST-353/464) showed >95% quinolone resistance. This large-scale comparison of AMR prevalence has shown that the prevalence of AMR remains stable for Campylobacter in the UK and the US. This suggests that antimicrobial stewardship and restricted antibiotic usage may help contain further expansion of AMR prevalence in Campylobacter but are unlikely to reduce it in the short term.


Assuntos
Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Campylobacter , Quinolonas , Aminoglicosídeos , Antibacterianos/farmacologia , Campylobacter/genética , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Farmacorresistência Bacteriana/genética , Genômica , Humanos , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Estados Unidos/epidemiologia
6.
Parasitology ; 149(1): 1-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694217

RESUMO

Human toxocariasis is a neglected tropical disease, which is actually global in distribution and has a significant impact on global public health. The infection can lead to several serious conditions in humans, including allergic, ophthalmic and neurological disorders such as epilepsy. It is caused by the common roundworm species Toxocara canis and Toxocara cati, with humans becoming accidentally infected via the ingestion of eggs or larvae. Toxocara eggs are deposited on the ground when infected dogs, cats and foxes defecate, with the eggs contaminating crops, grazing pastures, and subsequently food animals. However, transmission of Toxocara to humans via food consumption has received relatively little attention in the literature. To establish the risks that contaminated food poses to the public, a renewed research focus is required. This review discusses what is currently known about food-borne Toxocara transmission, highlighting the gaps in our understanding that require further attention, and outlining some potential preventative strategies which could be employed to safeguard consumer health.


Assuntos
Doenças do Sistema Nervoso , Toxocara canis , Toxocaríase , Animais , Encéfalo , Cães , Humanos , Toxocara , Toxocaríase/epidemiologia , Toxocaríase/prevenção & controle , Toxocaríase/transmissão , Zoonoses
7.
Clin Infect Dis ; 72(Suppl 3): S134-S139, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33905484

RESUMO

BACKGROUND: Tremendous progress towards elimination of trachoma as a public health problem has been made. However, there are areas where the clinical indicator of disease, trachomatous inflammation-follicular (TF), remains prevalent. We quantify the progress that has been made, and forecast how TF prevalence will evolve with current interventions. We also determine the probability that a district is a transmission-hotspot based on its TF prevalence (ie, reproduction number greater than one). METHODS: Data on trachoma prevalence come from the GET2020 global repository organized by the World Health Organization and the International Trachoma Initiative. Forecasts of TF prevalence and the percent of districts with local control is achieved by regressing the coefficients of a fitted exponential distribution for the year-by-year distribution of TF prevalence. The probability of a district being a transmission-hotspot is extrapolated from the residuals of the regression. RESULTS: Forecasts suggest that with current interventions, 96.5% of surveyed districts will have TF prevalence among children aged 1-9 years <5% by 2030 (95% CI: 86.6%-100.0%). Districts with TF prevalence < 20% appear unlikely to be transmission-hotspots. However, a district having TF prevalence of over 28% in 2016-2019 corresponds to at least 50% probability of being a transmission-hotspot. CONCLUSIONS: Sustainable control of trachoma appears achievable. However there are transmission-hotspots that are not responding to annual mass drug administration of azithromycin and require enhanced treatment in order to reach local control.


Assuntos
Tracoma , Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Criança , Estudos Transversais , Humanos , Lactente , Administração Massiva de Medicamentos , Prevalência , Tracoma/tratamento farmacológico
8.
Clin Infect Dis ; 72(8): 1463-1466, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32984870

RESUMO

Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.


Assuntos
COVID-19 , Medicina Tropical , Humanos , Doenças Negligenciadas/epidemiologia , Pandemias , SARS-CoV-2
9.
J Infect Dis ; 221(Suppl 5): S546-S553, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31841593

RESUMO

BACKGROUND: Control of visceral leishmaniasis (VL) on the Indian subcontinent relies on prompt detection and treatment of symptomatic cases. Detection efforts influence the observed VL incidence and how well it reflects the underlying true incidence. As control targets are defined in terms of observed cases, there is an urgent need to understand how changes in detection delay and population coverage of improved detection affect VL control. METHODS: Using a mathematical model for transmission and control of VL, we predict the impact of reduced detection delays and/or increased population coverage of the detection programs on observed and true VL incidence and mortality. RESULTS: Improved case detection, either by higher coverage or reduced detection delay, causes an initial rise in observed VL incidence before a reduction. Relaxation of improved detection may lead to an apparent temporary (1 year) reduction in VL incidence, but comes with a high risk of resurging infection levels. Duration of symptoms in detected cases shows an unequivocal association with detection effort. CONCLUSIONS: VL incidence on its own is not a reliable indicator of the performance of case detection programs. Duration of symptoms in detected cases can be used as an additional marker of the performance of case detection programs.


Assuntos
Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/prevenção & controle , Erradicação de Doenças , Humanos , Incidência , Índia/epidemiologia , Leishmaniose Visceral/epidemiologia , Modelos Biológicos
10.
J Infect Dis ; 221(Suppl 5): S499-S502, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32529261

RESUMO

As neglected tropical disease programs look to consolidate the successes of moving towards elimination, we need to understand the dynamics of transmission at low prevalence to inform surveillance strategies for detecting elimination and resurgence. In this special collection, modelling insights are used to highlight drivers of local elimination, evaluate strategies for detecting resurgence, and show the importance of rational spatial sampling schemes for several neglected tropical diseases (specifically schistosomiasis, soil-transmitted helminths, lymphatic filariasis, trachoma, onchocerciasis, visceral leishmaniasis, and gambiense sleeping sickness).


Assuntos
Erradicação de Doenças/estatística & dados numéricos , Doenças Negligenciadas/diagnóstico , Vigilância da População/métodos , Medicina Tropical , Humanos
11.
J Infect Dis ; 221(Suppl 5): S503-S509, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31853554

RESUMO

The low prevalence levels associated with lymphatic filariasis elimination pose a challenge for effective disease surveillance. As more countries achieve the World Health Organization criteria for halting mass treatment and move on to surveillance, there is increasing reliance on the utility of transmission assessment surveys (TAS) to measure success. However, the long-term disease outcomes after passing TAS are largely untested. Using 3 well-established mathematical models, we show that low-level prevalence can be maintained for a long period after halting mass treatment and that true elimination (0% prevalence) is usually slow to achieve. The risk of resurgence after achieving current targets is low and is hard to predict using just current prevalence. Although resurgence is often quick (<5 years), it can still occur outside of the currently recommended postintervention surveillance period of 4-6 years. Our results highlight the need for ongoing and enhanced postintervention monitoring, beyond the scope of TAS, to ensure sustained success.


Assuntos
Filariose Linfática/sangue , Filariose Linfática/parasitologia , Microfilárias/isolamento & purificação , Modelos Biológicos , Animais , Simulação por Computador , Erradicação de Doenças , Filariose Linfática/epidemiologia , Humanos
12.
J Infect Dis ; 221(Suppl 5): S519-S524, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32052842

RESUMO

BACKGROUND: As the World Health Organization seeks to eliminate trachoma by 2020, countries are beginning to control the transmission of trachomatous inflammation-follicular (TF) and discontinue mass drug administration (MDA) with oral azithromycin. We evaluated the effect of MDA discontinuation on TF1-9 prevalence at the district level. METHODS: We extracted from the available data districts with an impact survey at the end of their program cycle that initiated discontinuation of MDA (TF1-9 prevalence <5%), followed by a surveillance survey conducted to determine whether TF1-9 prevalence remained below the 5% threshold, warranting discontinuation of MDA. Two independent analyses were performed, 1 regression based and 1 simulation based, that assessed the change in TF1-9 from the impact survey to the surveillance survey. RESULTS: Of the 220 districts included, TF1-9 prevalence increased to >5% from impact to surveillance survey in 9% of districts. Regression analysis indicated that impact survey TF1-9 prevalence was a significant predictor of surveillance survey TF1-9 prevalence. The proportion of simulations with >5% TF1-9 prevalence in the surveillance survey was 2%, assuming the survey was conducted 4 years after MDA. CONCLUSION: An increase in TF1-9 prevalence may represent disease resurgence but could also be due to measurement error. Improved diagnostic tests are crucial to elimination of TF1-9 as a public health problem.


Assuntos
Antibacterianos/administração & dosagem , Azitromicina/administração & dosagem , Administração Massiva de Medicamentos , Tracoma/tratamento farmacológico , Tracoma/epidemiologia , Administração Oral , Criança , Pré-Escolar , Bases de Dados Factuais , Saúde Global , Humanos , Lactente , Modelos Lineares , Prevalência , Saúde Pública , Processos Estocásticos , Tracoma/prevenção & controle , Organização Mundial da Saúde
13.
Mol Biol Evol ; 35(3): 676-687, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294066

RESUMO

Defense against infection incurs costs as well as benefits that are expected to shape the evolution of optimal defense strategies. In particular, many theoretical studies have investigated contexts favoring constitutive versus inducible defenses. However, even when one immune strategy is theoretically optimal, it may be evolutionarily unachievable. This is because evolution proceeds via mutational changes to the protein interaction networks underlying immune responses, not by changes to an immune strategy directly. Here, we use a theoretical simulation model to examine how underlying network architectures constrain the evolution of immune strategies, and how these network architectures account for desirable immune properties such as inducibility and robustness. We focus on immune signaling because signaling molecules are common targets of parasitic interference but are rarely studied in this context. We find that in the presence of a coevolving parasite that disrupts immune signaling, hosts evolve constitutive defenses even when inducible defenses are theoretically optimal. This occurs for two reasons. First, there are relatively few network architectures that produce immunity that is both inducible and also robust against targeted disruption. Second, evolution toward these few robust inducible network architectures often requires intermediate steps that are vulnerable to targeted disruption. The few networks that are both robust and inducible consist of many parallel pathways of immune signaling with few connections among them. In the context of relevant empirical literature, we discuss whether this is indeed the most evolutionarily accessible robust inducible network architecture in nature, and when it can evolve.

14.
Clin Infect Dis ; 66(suppl_4): S260-S266, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860286

RESUMO

Background: With the 2020 target year for elimination of lymphatic filariasis (LF) approaching, there is an urgent need to assess how long mass drug administration (MDA) programs with annual ivermectin + albendazole (IA) or diethylcarbamazine + albendazole (DA) would still have to be continued, and how elimination can be accelerated. We addressed this using mathematical modeling. Methods: We used 3 structurally different mathematical models for LF transmission (EPIFIL, LYMFASIM, TRANSFIL) to simulate trends in microfilariae (mf) prevalence for a range of endemic settings, both for the current annual MDA strategy and alternative strategies, assessing the required duration to bring mf prevalence below the critical threshold of 1%. Results: Three annual MDA rounds with IA or DA and good coverage (≥65%) are sufficient to reach the threshold in settings that are currently at mf prevalence <4%, but the required duration increases with increasing mf prevalence. Switching to biannual MDA or employing triple-drug therapy (ivermectin, diethylcarbamazine, and albendazole [IDA]) could reduce program duration by about one-third. Optimization of coverage reduces the time to elimination and is particularly important for settings with a history of poorly implemented MDA (low coverage, high systematic noncompliance). Conclusions: Modeling suggests that, in several settings, current annual MDA strategies will be insufficient to achieve the 2020 LF elimination targets, and programs could consider policy adjustment to accelerate, guided by recent monitoring and evaluation data. Biannual treatment and IDA hold promise in reducing program duration, provided that coverage is good, but their efficacy remains to be confirmed by more extensive field studies.


Assuntos
Albendazol/administração & dosagem , Erradicação de Doenças , Filariose Linfática/prevenção & controle , Filaricidas/administração & dosagem , Modelos Teóricos , Animais , Simulação por Computador , Dietilcarbamazina/administração & dosagem , Quimioterapia Combinada , Filariose Linfática/tratamento farmacológico , Filariose Linfática/epidemiologia , Filariose Linfática/transmissão , Humanos , Ivermectina/administração & dosagem , Administração Massiva de Medicamentos , Microfilárias
15.
Epidemiol Infect ; 146(13): 1699-1706, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30078387

RESUMO

Measles is a target for elimination in all six WHO regions by 2020, and over the last decade, there has been considerable progress towards this goal. Surveillance is recognised as a cornerstone of elimination programmes, allowing early identification of outbreaks, thus enabling control and preventing re-emergence. Fever-rash surveillance is increasingly available across WHO regions, and this symptom-based reporting is broadly used for measles surveillance. However, as measles control increases, symptom-based cases are increasingly likely to reflect infection with other diseases with similar symptoms such as rubella, which affects the same populations, and can have a similar seasonality. The WHO recommends that cases from suspected measles outbreaks be laboratory-confirmed, to identify 'true' cases, corresponding to measles IgM titres exceeding a threshold indicative of infection. Although serological testing for IgM has been integrated into the fever-rash surveillance systems in many countries, the logistics of sending in every suspected case are often beyond the health system's capacity. We show how age data from serologically confirmed cases can be leveraged to infer the status of non-tested samples, thus strengthening the information we can extract from symptom-based surveillance. Applying an age-specific confirmation model to data from three countries with divergent epidemiology across Africa, we identify the proportion of cases that need to be serologically tested to achieve target levels of accuracy in estimated infected numbers and discuss how this varies depending on the epidemiological context. Our analysis provides an approach to refining estimates of incidence leveraging all available data, which has the potential to improve allocation of resources, and thus contribute to rapid and efficient control of outbreaks.


Assuntos
Sarampo/epidemiologia , Vigilância da População/métodos , Etiópia/epidemiologia , Incidência , Quênia/epidemiologia , Testes Sorológicos , Zimbábue/epidemiologia
17.
Int J Parasitol ; 54(6): 303-310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458482

RESUMO

Toxocara canis and Toxocara cati are globally distributed, zoonotic roundworm parasites. Human infection can have serious clinical consequences including blindness and brain disorders. In addition to ingesting environmental eggs, humans can become infected by eating infective larvae in raw or undercooked meat products. To date, no studies have assessed the prevalence of Toxocara spp. larvae in meat from animals consumed as food in the UK or assessed tissue exudates for the presence of anti-Toxocara antibodies. This study aimed to assess the potential risk to consumers eating meat products from animals infected with Toxocara spp. Tissue samples were obtained from 155 different food producing animals in the south, southwest and east of England, UK. Tissue samples (n = 226), either muscle or liver, were processed by artificial digestion followed by microscopic sediment evaluation for Toxocara spp. larvae, and tissue exudate samples (n = 141) were tested for the presence of anti-Toxocara antibodies using a commercial ELISA kit. A logistic regression model was used to compare anti-Toxocara antibody prevalence by host species, tissue type and source. While no larvae were found by microscopic examination after tissue digestion, the overall prevalence of anti-Toxocara antibodies in tissue exudates was 27.7%. By species, 35.3% of cattle (n = 34), 15.0% of sheep (n = 60), 54.6% of goats (n = 11) and 61.1% of pigs (n = 18) had anti-Toxocara antibodies. Logistic regression analysis found pigs were more likely to be positive for anti-Toxocara antibodies (odds ration (OR) = 2.89, P = 0.0786) compared with the other species sampled but only at a 10% significance level. The high prevalence of anti-Toxocara antibodies in tissue exudates suggests that exposure of food animals to this parasite is common in England. Tissue exudate serology on meat products within the human food chain could be applied in support of food safety and to identify practices that increase risks of foodborne transmission of zoonotic toxocariasis.


Assuntos
Anticorpos Anti-Helmínticos , Toxocara , Toxocaríase , Animais , Toxocaríase/epidemiologia , Toxocaríase/parasitologia , Toxocara/imunologia , Toxocara/isolamento & purificação , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/análise , Ovinos , Suínos , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Inglaterra/epidemiologia , Carne/parasitologia , Fígado/parasitologia , Cabras , Exsudatos e Transudatos/parasitologia , Doenças dos Suínos/parasitologia , Humanos , Músculos/parasitologia , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/epidemiologia , Parasitologia de Alimentos
18.
Animals (Basel) ; 14(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672321

RESUMO

The increasing overlap of resources between human and long-tailed macaque (Macaca fascicularis) (LTM) populations have escalated human-primate conflict. In Malaysia, LTMs are labeled as a 'pest' species due to the macaques' opportunistic nature. This study investigates the activity budget of LTMs in an urban tourism site and how human activities influence it. Observational data were collected from LTMs daily for a period of four months. The observed behaviors were compared across differing levels of human interaction, between different times of day, and between high, medium, and low human traffic zones. LTMs exhibited varying ecological behavior patterns when observed across zones of differing human traffic, e.g., higher inactivity when human presence is high. More concerning is the impact on these animals' welfare and group dynamics as the increase in interactions with humans takes place; we noted increased inactivity and reduced intra-group interaction. This study highlights the connection that LTMs make between human activity and sources of anthropogenic food. Only through understanding LTM interaction can the cause for human-primate conflict be better understood, and thus, more sustainable mitigation strategies can be generated.

19.
One Health ; 18: 100704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38496337

RESUMO

As the complexity of health systems has increased over time, there is an urgent need for developing multi-sectoral and multi-disciplinary collaborations within the domain of One Health (OH). Despite the efforts to promote collaboration in health surveillance and overcome professional silos, implementing OH surveillance systems in practice remains challenging for multiple reasons. In this study, we describe the lessons learned from the evaluation of OH surveillance using OH-EpiCap (an online evaluation tool for One Health epidemiological surveillance capacities and capabilities), the challenges identified with the implementation of OH surveillance, and the main barriers that contribute to its sub-optimal functioning, as well as possible solutions to address them. We conducted eleven case studies targeting the multi-sectoral surveillance systems for antimicrobial resistance in Portugal and France, Salmonella in France, Germany, and the Netherlands, Listeria in The Netherlands, Finland and Norway, Campylobacter in Norway and Sweden, and psittacosis in Denmark. These evaluations facilitated the identification of common strengths and weaknesses, focusing on the organization and functioning of existing collaborations and their impacts on the surveillance system. Lack of operational and shared leadership, adherence to FAIR data principles, sharing of techniques, and harmonized indicators led to poor organization and sub-optimal functioning of OH surveillance systems. In the majority of studied systems, the effectiveness, operational costs, behavioral changes, and population health outcomes brought by the OH surveillance over traditional surveillance (i.e. compartmentalized into sectors) have not been evaluated. To this end, the establishment of a formal governance body with representatives from each sector could assist in overcoming long-standing barriers. Moreover, demonstrating the impacts of OH-ness of surveillance may facilitate the implementation of OH surveillance systems.

20.
PLoS Negl Trop Dis ; 18(3): e0011939, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536863

RESUMO

Cystic Echinococcosis (CE) as a prevalent tapeworm infection of human and herbivorous animals worldwide, is caused by accidental ingestion of Echinococcus granulosus eggs excreted from infected dogs. CE is endemic in the Middle East and North Africa, and is considered as an important parasitic zoonosis in Iran. It is transmitted between dogs as the primary definitive host and different livestock species as the intermediate hosts. One of the most important measures for CE control is dog deworming with praziquantel. Due to the frequent reinfection of dogs, intensive deworming campaigns are critical for breaking CE transmission. Dog reinfection rate could be used as an indicator of the intensity of local CE transmission in endemic areas. However, our knowledge on the extent of reinfection in the endemic regions is poor. The purpose of the present study was to determine E. granulosus reinfection rate after praziquantel administration in a population of owned dogs in Kerman, Iran. A cohort of 150 owned dogs was recruited, with stool samples collected before praziquantel administration as a single oral dose of 5 mg/kg. The re-samplings of the owned dogs were performed at 2, 5 and 12 months following initial praziquantel administration. Stool samples were examined microscopically using Willis flotation method. Genomic DNA was extracted, and E. granulosus sensu lato-specific primers were used to PCR-amplify a 133-bp fragment of a repeat unit of the parasite genome. Survival analysis was performed using Kaplan-Meier method to calculate cumulative survival rates, which is used here to capture reinfection dynamics, and monthly incidence of infection, capturing also the spatial distribution of disease risk. Results of survival analysis showed 8, 12 and 17% total reinfection rates in 2, 5 and 12 months following initial praziquantel administration, respectively, indicating that 92, 88 and 83% of the dogs had no detectable infection in that same time periods. The monthly incidence of reinfection in total owned dog population was estimated at 1.5% (95% CI 1.0-2.1). The results showed that the prevalence of echinococcosis in owned dogs, using copro-PCR assay was 42.6%. However, using conventional microscopy, 8% of fecal samples were positive for taeniid eggs. Our results suggest that regular treatment of the dog population with praziquantel every 60 days is ideal, however the frequency of dog dosing faces major logistics and cost challenges, threatening the sustainability of control programs. Understanding the nature and extent of dog reinfection in the endemic areas is essential for successful implementation of control programs and understanding patterns of CE transmission.


Assuntos
Doenças do Cão , Equinococose , Echinococcus granulosus , Humanos , Cães , Animais , Praziquantel/uso terapêutico , Irã (Geográfico)/epidemiologia , Reinfecção , Fazendas , Equinococose/tratamento farmacológico , Equinococose/epidemiologia , Equinococose/veterinária , Echinococcus granulosus/genética , Fezes/parasitologia , Doenças do Cão/tratamento farmacológico , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA