Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 412(15): 3753-3763, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32300842

RESUMO

Here, a fast and eco-friendly one-pot hydrothermal technique is utilized for the synthesis of nitrogen/sulfur-co-doped fluorescent carbon quantum dots (NS-CQDs) from a simple precursor of citric acid (CA) and thiosemicarbazide (TSC). The obtained NS-CQDs exhibited strong blue emission under UV light, with fluorescence quantum yield (QY) of ~37.8%. The Commission internationale de l'eclairage (CIE) coordinates originated at (0.15, 0.07), which confirmed the blue fluorescence of the synthesized NS-CQDs. Interestingly, the prepared NS-CQDs were successfully used as a selective nanoprobe for the monitoring of environmentally hazardous explosive picric acid (PA) in different nitro- and non-nitro-aromatic derivatives of PA. The mechanism of the NS-CQDs was also explored, and was posited to occur via the fluorescence resonance electron transfer (FRET) process and non-fluorescent complex formation. Importantly, this system possesses excellent biocompatibility and low cytotoxicity in HeLa cervical cancer cells; hence, it can potentially be used for PA detection in analytical, environmental, and pathological applications. Furthermore, the practical applicability of the proposed sensing system to pond water demonstrated the feasibility of our system along with good recovery. Graphical abstract.


Assuntos
Carbono/química , Nitrogênio/química , Picratos/análise , Pontos Quânticos/química , Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Espectrometria de Fluorescência/métodos , Água/análise
2.
Eur J Cell Biol ; 102(2): 151300, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36858008

RESUMO

A-kinase anchoring protein (AKAP) comprises a family of scaffold proteins, which decides the subcellular localisation of a combination of signalling molecules. Spoonbill (Spoon) is a putative A-kinase anchoring protein in Drosophila. We have earlier reported that Spoon suppresses ribonuclear foci formed by trinucleotide repeat expanded transcripts associated with Spinocerebellar Ataxia 8 neurodegeneration in Drosophila. However, the role of Spoonbill in cellular signalling was unexplored. In this report, we have unravelled a novel function of Spoon protein in the regulation of the apoptotic pathway. The Drosophila TNFα homolog, Eiger, induces apoptosis via activation of the JNK pathway. We have shown here that Spoonbill is a positive regulator of the Eiger-induced JNK signalling. Further genetic interaction studies show that the spoon interacts with components of the JNK pathway, TGF-ß activated kinase 1 (Tak1 - JNKKK), hemipterous (hep - JNKK) and basket (bsk - JNK). Interestingly, Spoonbill alone can also induce ectopic activation of the JNK pathway in a context-specific manner. To understand the molecular mechanism underlying Spoonbill-mediated modulation of the JNK pathway, the interaction between Spoon and Drosophila JNK was assessed. basket encodes the only known JNK in Drosophila. This serine/threonine-protein kinase phosphorylates Jra/Kay, which transcriptionally regulate downstream targets like Matrix metalloproteinase 1 (Mmp1), puckered (puc), and proapoptotic genes hid, reaper and grim. Interestingly, we found that Spoonbill colocalises and co-immunoprecipitates with the Basket protein in the developing photoreceptor neurons. Hence, we propose that Spoon plays a vital role in JNK-induced apoptosis. Furthermore, stress-induced JNK activation underlying Parkinson's Disease was also examined. In the Parkinson's Drosophila model of neurodegeneration, depletion of Spoonbill leads to a partial reduction of JNK pathway activation, along with improvement in adult motor activity. These observations suggest that the putative scaffold protein Spoonbill is a functional and physical interacting partner of the Drosophila JNK protein, Basket. Spoon protein is localised on the outer mitochondrial membrane (OMM), which may perhaps provide a suitable subcellular niche for activation of Drosophila Basket protein by its kinases which induce apoptosis.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Apoptose/genética , Fosfoproteínas Fosfatases/metabolismo
3.
Cell Death Dis ; 11(9): 739, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913179

RESUMO

Parkinson's disease (PD) is a neuromotor disorder, primarily manifested by motor anomalies due to progressive loss of dopaminergic neurons. Although alterations in genetic factors have been linked with its etiology, exponential accumulation of environmental entities such as reactive oxygen species (ROS) initiate a cyclic chain reaction resulting in accumulation of cellular inclusions, dysfunctional mitochondria, and overwhelming of antioxidant machinery, thus accelerating disease pathogenesis. Involvement of oxidative stress in PD is further substantiated through ROS induced Parkinsonian models and elevated oxidative markers in clinical PD samples; thereby, making modulation of neuronal oxidative load as one of the major approaches in management of PD. Here we have found a potent antioxidant moiety Scopoletin (Sp), a common derivative in most of the nootropic herbs, with robust neuroprotective ability. Sp increased cellular resistance to ROS through efficient recycling of GSH to prevent oxidative damage. The Sp treated cells showed higher loads of reduced glutathione making them resistant to perturbation of antioxidant machinery or neurotoxin MPP+. Sp could restore the redox balance, mitochondrial function, and prevented oxidative damage, leading to recovery of dopaminergic neural networks and motion abilities in Drosophila genetic model of PD. Our data also suggest that Sp, in combination increases the therapeutic potency of L-DOPA by mitigating its chronic toxicity. Together, we highlight the possible ability of Sp in preventing oxidative stress mediated loss of dopaminergic neurons and at the same time enhance the efficacy of dopamine recharging regimens.


Assuntos
Dopamina/metabolismo , Drosophila/genética , Glutationa/metabolismo , Doença de Parkinson/genética , Escopoletina/uso terapêutico , Animais , Humanos , Estresse Oxidativo , Doença de Parkinson/mortalidade , Escopoletina/farmacologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA