RESUMO
BACKGROUND: Analytical treatment interruption (ATI) is the gold standard in HIV research for assessing the capability of new therapeutic strategies to control viremia without antiretroviral treatment (ART). The viral setpoint is commonly used as endpoint to evaluate their efficacy. However, in line with recommendations from a consensus meeting, to minimize the risk of increased viremia without ART, trials often implement short ATI phases and stringent virological ART restart criteria. This approach can limit the accurate observation of the setpoint. METHODS: We analyzed viral dynamics in 235 people with HIV from 3 trials, examining virological criteria during ATI phases. Time-related (eg time to rebound, peak, and setpoint) and viral load magnitude-related criteria (peak, setpoint, and time-averaged AUC [nAUC]) were described. Spearman correlations were analyzed to identify (1) surrogate endpoints for setpoint and (2) optimal virological ART restart criteria mitigating the risks of ART interruption and the evaluation of viral control. RESULTS: Comparison of virological criteria between trials showed strong dependencies on ATI design. Similar correlations were found across trials, with nAUC the most strongly correlated with the setpoint, with correlations >0.70. A threshold >100 000â copies/mL for 2 consecutive measures is requested as a virological ART restart criterion. CONCLUSIONS: Our results are in line with recommendations and emphasize the benefits of an ATI phase >12 weeks, with regular monitoring, and a virological ART restart criterion of 10 000â copies/mL to limit the risk for patients while capturing enough information to keep nAUC as an optimal proxy to the setpoint.
RESUMO
Because SARS-CoV-2 constantly mutates to escape from the immune response, there is a reduction of neutralizing capacity of antibodies initially targeting the historical strain against emerging Variants of Concern (VoC)s. That is why the measure of the protection conferred by vaccination cannot solely rely on the antibody levels, but also requires to measure their neutralization capacity. Here we used a mathematical model to follow the humoral response in 26 individuals that received up to three vaccination doses of Bnt162b2 vaccine, and for whom both anti-S IgG and neutralization capacity was measured longitudinally against all main VoCs. Our model could identify two independent mechanisms that led to a marked increase in measured humoral response over the successive vaccination doses. In addition to the already known increase in IgG levels after each dose, we identified that the neutralization capacity was significantly increased after the third vaccine administration against all VoCs, despite large inter-individual variability. Consequently, the model projects that the mean duration of detectable neutralizing capacity against non-Omicron VoC is between 348 days (Beta variant, 95% Prediction Intervals PI [307; 389]) and 587 days (Alpha variant, 95% PI [537; 636]). Despite the low neutralization levels after three doses, the mean duration of detectable neutralizing capacity against Omicron variants varies between 173 days (BA.5 variant, 95% PI [142; 200]) and 256 days (BA.1 variant, 95% PI [227; 286]). Our model shows the benefit of incorporating the neutralization capacity in the follow-up of patients to better inform on their level of protection against the different SARS-CoV-2 variants. Trial registration: This clinical trial is registered with ClinicalTrials.gov, Trial IDs NCT04750720 and NCT05315583.
Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Imunoglobulina G , SARS-CoV-2/genética , VacinaçãoRESUMO
The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics observed with VoC and better quantify how VoC escape from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the observed dynamics, and we found that the best model describing the data assumed a rapid antigen-dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC except beta were associated with an escape from this immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6 for both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate (p = 0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production rate (p<10-6). During a natural infection, our models predict that delta variant is associated with a higher peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8-8 for delta; 5.6 log10 copies/mL 95% CI 4.8-6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4-4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9-3.8 for omicron). These results provide a detailed picture of the effects of VoC on total and infectious viral load and may help understand some differences observed in the patterns of viral transmission of these viruses.
Assuntos
COVID-19 , Animais , SARS-CoV-2/genética , Movimento Celular , Macaca fascicularis , PrimatasRESUMO
PURPOSE: Following a severe COVID-19 infection, a proportion of individuals develop prolonged symptoms. We investigated the immunological dysfunction that underlies the persistence of symptoms months after the resolution of acute COVID-19. METHODS: We analyzed cytokines, cell phenotypes, SARS-CoV-2 spike-specific and neutralizing antibodies, and whole blood gene expression profiles in convalescent severe COVID-19 patients 1, 3, and 6 months following hospital discharge. RESULTS: We observed persistent abnormalities until month 6 marked by (i) high serum levels of monocyte/macrophage and endothelial activation markers, chemotaxis, and hematopoietic cytokines; (ii) a high frequency of central memory CD4+ and effector CD8+ T cells; (iii) a decrease in anti-SARS-CoV-2 spike and neutralizing antibodies; and (iv) an upregulation of genes related to platelet, neutrophil activation, erythrocytes, myeloid cell differentiation, and RUNX1 signaling. We identified a "core gene signature" associated with a history of thrombotic events, with upregulation of a set of genes involved in neutrophil activation, platelet, hematopoiesis, and blood coagulation. CONCLUSION: The lack of restoration of gene expression to a normal profile after up to 6 months of follow-up, even in asymptomatic patients who experienced severe COVID-19, signals the need to carefully extend their clinical follow-up and propose preventive measures.
Assuntos
COVID-19 , Trombose , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Ativação de Neutrófilo , Anticorpos Neutralizantes , Trombose/etiologia , Citocinas , Anticorpos AntiviraisRESUMO
BACKGROUND: Multiple factors shape the temporal dynamics of the COVID-19 pandemic. Quantifying their relative contributions is key to guide future control strategies. Our objective was to disentangle the individual effects of non-pharmaceutical interventions (NPIs), weather, vaccination, and variants of concern (VOC) on local SARS-CoV-2 transmission. METHODS: We developed a log-linear model for the weekly reproduction number (R) of hospital admissions in 92 French metropolitan departments. We leveraged (i) the homogeneity in data collection and NPI definitions across departments, (ii) the spatial heterogeneity in the timing of NPIs, and (iii) an extensive observation period (14 months) covering different weather conditions, VOC proportions, and vaccine coverage levels. FINDINGS: Three lockdowns reduced R by 72.7% (95% CI 71.3-74.1), 70.4% (69.2-71.6) and 60.7% (56.4-64.5), respectively. Curfews implemented at 6/7 pm and 8/9 pm reduced R by 34.3% (27.9-40.2) and 18.9% (12.04-25.3), respectively. School closures reduced R by only 4.9% (2.0-7.8). We estimated that vaccination of the entire population would have reduced R by 71.7% (56.4-81.6), whereas the emergence of VOC (mainly Alpha during the study period) increased transmission by 44.6% (36.1-53.6) compared with the historical variant. Winter weather conditions (lower temperature and absolute humidity) increased R by 42.2% (37.3-47.3) compared to summer weather conditions. Additionally, we explored counterfactual scenarios (absence of VOC or vaccination) to assess their impact on hospital admissions. INTERPRETATION: Our study demonstrates the strong effectiveness of NPIs and vaccination and quantifies the role of weather while adjusting for other confounders. It highlights the importance of retrospective evaluation of interventions to inform future decision-making.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Estudos Retrospectivos , Controle de Doenças Transmissíveis , Vacinação , Tempo (Meteorologia) , França/epidemiologiaRESUMO
The Ebola vaccine based on Ad26.ZEBOV/MVA-BN-Filo prime-boost regimens is being evaluated in multiple clinical trials. The long-term immune response to the vaccine is unknown, including factors associated with the response and variability around the response. We analyzed data from three phase 1 trials performed by the EBOVAC1 Consortium in four countries: the United Kingdom, Kenya, Tanzania, and Uganda. Participants were randomized into four groups based on the interval between prime and boost immunizations (28 or 56 days) and the sequence in which Ad26.ZEBOV and MVA-BN-Filo were administered. Consecutive enzyme-linked immunosorbent assay (ELISA) measurements of the IgG binding antibody concentrations against the Kikwit glycoprotein (GP) were available for 177 participants to assess the humoral immune response up to 1 year postprime. Using a mathematical model for the dynamics of the humoral response, from 7 days after the boost immunization up to 1 year after the prime immunization, we estimated the durability of the antibody response and the influence of different factors on the dynamics of the humoral response. Ordinary differential equations (ODEs) described the dynamics of antibody response and two populations of antibody-secreting cells (ASCs), short-lived (SL) and long-lived (LL). Parameters of the ODEs were estimated using a population approach. We estimated that half of the LL ASCs could persist for at least 5 years. The vaccine regimen significantly affected the SL ASCs and the antibody peak but not the long-term response. The LL ASC compartment dynamics differed significantly by geographic regions analyzed, with a higher long-term antibody persistence in European subjects. These differences could not be explained by the observed differences in cellular immune response.IMPORTANCE With no available licensed vaccines or therapies, the West African Ebola virus disease epidemic of 2014 to 2016 caused 11,310 deaths. Following this outbreak, the development of vaccines has been accelerated. Combining different vector-based vaccines as heterologous regimens could induce a durable immune response, assessed through antibody concentrations. Based on data from phase 1 trials in East Africa and Europe, the dynamics of the humoral immune response from 7 days after the boost immunization onwards were modeled to estimate the durability of the response and understand its variability. Antibody production is maintained by a population of long-lived cells. Estimation suggests that half of these cells can persist for at least 5 years in humans. Differences in prime-boost vaccine regimens affect only the short-term immune response. Geographical differences in long-lived cell dynamics were inferred, with higher long-term antibody concentrations induced in European participants.
Assuntos
Vacinas contra Ebola/imunologia , Imunidade Humoral/efeitos dos fármacos , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Ensaios Clínicos Fase I como Assunto/métodos , Vacinas contra Ebola/farmacologia , Ebolavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunização Secundária/métodos , Quênia , Masculino , Modelos Teóricos , Tanzânia , Uganda , Reino Unido , VacinaçãoRESUMO
The 2014-2016 Ebola outbreak in West Africa has triggered accelerated development of several preventive vaccines against Ebola virus. Under the EBOVAC1 consortium, three phase I studies were carried out to assess safety and immunogenicity of a two-dose heterologous vaccination regimen developed by Janssen Vaccines and Prevention in collaboration with Bavarian Nordic. To describe the immune response induced by the two-dose heterologous vaccine regimen, we propose a mechanistic ODE based model, which takes into account the role of immunological memory. We perform identifiability and sensitivity analysis of the proposed model to establish which kind of biological data are ideally needed in order to accurately estimate parameters, and additionally, which of those are non-identifiable based on the available data. Antibody concentrations data from phase I studies have been used to calibrate the model and show its ability in reproducing the observed antibody dynamics. Together with other factors, the establishment of an effective and reactive immunological memory is of pivotal importance for several prophylactic vaccines. We show that introducing a memory compartment in our calibrated model allows to evaluate the magnitude of the immune response induced by a booster dose and its long-term persistence afterwards.
Assuntos
Vacinas contra Ebola , Ebolavirus , Imunidade , Modelos Biológicos , África Ocidental , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Imunidade/imunologia , VacinaçãoRESUMO
In human immunodeficiency virus-infected patients, antiretroviral therapy suppresses the viral replication, which is followed in most patients by a restoration of CD4+ T cells pool. For patients who fail to do so, repeated injections of exogenous interleukin 7 (IL7) are experimented. The IL7 is a cytokine that is involved in the T cell homeostasis and the INSPIRE study has shown that injections of IL7 induced a proliferation of CD4+ T cells. Phase I/II INSPIRE 2 and 3 studies have evaluated a protocol in which a first cycle of three IL7 injections is followed by a new cycle at each visit when the patient has less than 550 CD4 cells/µL. Restoration of the CD4 concentration has been demonstrated, but the long-term best adaptive protocol is yet to be determined. A mechanistic model of the evolution of CD4 after IL7 injections has been developed, which is based on a system of ordinary differential equations and includes random effects. Based on the estimation of this model, we use a Bayesian approach to forecast the dynamics of CD4 in new patients. We propose four prediction-based adaptive protocols of injections to minimize the time spent under 500 CD4 cells/µL for each patient, without increasing the number of injections received too much. We show that our protocols significantly reduce the time spent under 500 CD4 over a period of two years, without increasing the number of injections. These protocols have the potential to increase the efficiency of this therapy.
Assuntos
Contagem de Linfócito CD4/estatística & dados numéricos , Infecções por HIV/tratamento farmacológico , Interleucina-7/uso terapêutico , Modelos Estatísticos , Adulto , Protocolos Clínicos , Interpretação Estatística de Dados , Humanos , Resultado do TratamentoRESUMO
UNLABELLED: Although vaccines and antiretroviral (ARV) prevention have demonstrated partial success against human immunodeficiency virus (HIV) infection in clinical trials, their combined introduction could provide more potent protection. Furthermore, combination approaches could ameliorate the potential increased risk of infection following vaccination in the absence of protective immunity. We used a nonhuman primate model to determine potential interactions of combining a partially effective ARV microbicide with an envelope-based vaccine. The vaccine alone provided no protection from infection following 12 consecutive low-dose intravaginal challenges with simian-HIV strain SF162P3, with more animals infected compared to naive controls. The microbicide alone provided a 68% reduction in the risk of infection relative to that of the vaccine group and a 45% reduction relative to that of naive controls. The vaccine-microbicide combination provided an 88% reduction in the per-exposure risk of infection relative to the vaccine alone and a 79% reduction relative to that of the controls. Protected animals in the vaccine-microbicide group were challenged a further 12 times in the absence of microbicide and demonstrated a 98% reduction in the risk of infection. A total risk reduction of 91% was observed in this group over 24 exposures (P = 0.004). These important findings suggest that combined implementation of new biomedical prevention strategies may provide significant gains in HIV prevention. IMPORTANCE: There is a pressing need to maximize the impact of new biomedical prevention tools in the face of the 2 million HIV infections that occur each year. Combined implementation of complementary biomedical approaches could create additive or synergistic effects that drive improved reduction of HIV incidence. Therefore, we assessed a combination of an untested vaccine with an ARV-based microbicide in a nonhuman primate vaginal challenge model. The vaccine alone provided no protection (and may have increased susceptibility to a simian-HIV vaginal challenge), while the microbicide reduced the infection risk compared to that of vaccinated and naive animals. Importantly, the combined interventions provided the greatest level of protection, which was sustained following withdrawal of the microbicide. The data suggest that provision of ARV prophylaxis during vaccination reduces the potential for unexpected increased risks of infection following immunization and augments vaccine efficacy. These findings are important for the potential adoption of ARV prophylaxis as the baseline intervention for future HIV/AIDS vaccines.
Assuntos
Vacinas contra a AIDS/imunologia , Fármacos Anti-HIV/administração & dosagem , Infecções por HIV/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Tenofovir/administração & dosagem , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Sinergismo Farmacológico , Feminino , Anticorpos Anti-HIV/sangue , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Macaca fascicularis , Modelos Animais , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/isolamento & purificação , VacinaçãoRESUMO
In 2004, Murray et al. reviewed methodological developments in the design and analysis of group-randomized trials (GRTs). We have updated that review with developments in analysis of the past 13 years, with a companion article to focus on developments in design. We discuss developments in the topics of the earlier review (e.g., methods for parallel-arm GRTs, individually randomized group-treatment trials, and missing data) and in new topics, including methods to account for multiple-level clustering and alternative estimation methods (e.g., augmented generalized estimating equations, targeted maximum likelihood, and quadratic inference functions). In addition, we describe developments in analysis of alternative group designs (including stepped-wedge GRTs, network-randomized trials, and pseudocluster randomized trials), which require clustering to be accounted for in their design and analysis.
Assuntos
Análise por Conglomerados , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Humanos , Modelos Estatísticos , Grupos PopulacionaisRESUMO
In 2004, Murray et al. reviewed methodological developments in the design and analysis of group-randomized trials (GRTs). We have highlighted the developments of the past 13 years in design with a companion article to focus on developments in analysis. As a pair, these articles update the 2004 review. We have discussed developments in the topics of the earlier review (e.g., clustering, matching, and individually randomized group-treatment trials) and in new topics, including constrained randomization and a range of randomized designs that are alternatives to the standard parallel-arm GRT. These include the stepped-wedge GRT, the pseudocluster randomized trial, and the network-randomized GRT, which, like the parallel-arm GRT, require clustering to be accounted for in both their design and analysis.
Assuntos
Análise por Conglomerados , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Projetos de Pesquisa , Humanos , Modelos Estatísticos , Tamanho da AmostraRESUMO
Highly active antiretroviral therapy (HAART) has proved efficient in increasing CD4 counts in many randomized clinical trials. Because randomized trials have some limitations (e.g., short duration, highly selected subjects), it is interesting to assess the effect of treatments using observational studies. This is challenging because treatment is started preferentially in subjects with severe conditions. This general problem had been treated using Marginal Structural Models (MSM) relying on the counterfactual formulation. Another approach to causality is based on dynamical models. We present three discrete-time dynamic models based on linear increments models (LIM): the first one based on one difference equation for CD4 counts, the second with an equilibrium point, and the third based on a system of two difference equations, which allows jointly modeling CD4 counts and viral load. We also consider continuous-time models based on ordinary differential equations with non-linear mixed effects (ODE-NLME). These mechanistic models allow incorporating biological knowledge when available, which leads to increased statistical evidence for detecting treatment effect. Because inference in ODE-NLME is numerically challenging and requires specific methods and softwares, LIM are a valuable intermediary option in terms of consistency, precision, and complexity. We compare the different approaches in simulation and in illustration on the ANRS CO3 Aquitaine Cohort and the Swiss HIV Cohort Study.
Assuntos
Fármacos Anti-HIV/farmacologia , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Causalidade , Modelos Lineares , Estudos de Coortes , Simulação por Computador , Humanos , Estudos Observacionais como Assunto , Resultado do Tratamento , Carga ViralRESUMO
Routine monitoring of HIV-1 RNA or viral load (VL) in patients on antiretroviral therapy (ART) is important, but there are multiple impediments to VL testing in resource-constrained settings. An accurate point-of-care (POC) HIV-1 VL test could alleviate many of these challenges. We compared the performance of the Cepheid Xpert HIV-1 VL assay against the laboratory-based Abbott m2000sp/m2000rt assay (Abbott assay). ART-naive individuals participating in the Botswana Combination Prevention Project in 20 communities provided EDTA-blood specimens during household surveys. Both the POC Xpert HIV-1 VL and Abbott assays were performed on specimens sampled from 277 individuals. We found a high correlation between the Xpert HIV-1 VL and Abbott assay results (r2 = 0.92; P < 0.001). The overall mean difference in the HIV-1 RNA values obtained by Xpert HIV-1 VL assay and Abbott assay was 0.34 log10 copies/ml (95% confidence interval [CI], 0.26 to 0.40 log10 copies/ml) (P < 0.001). Using a clinically relevant level of 1,000 copies/ml as a threshold, agreement was 90.6% (95% CI, 87.9 to 93.1%), with a sensitivity of 98.6% (95% CI, 97.2 to 100%). The two methods agreed on their detectability of HIV-1 RNA (>40 copies/ml) at 97.1% (95% CI, 95.5 to 98.7%), with a sensitivity of 99.6% (95% CI, 97.2 to 100%). The POC Cepheid Xpert HIV-1 VL assay showed high agreement and accuracy with a laboratory-based method of HIV-1 RNA testing. The POC Xpert HIV-1 VL assay tended to overestimate HIV-1 VL, although the difference was below a clinically relevant threshold of 0.5 log10 copies/ml. The POC Cepheid Xpert HIV-1 VL assay is a promising tool for monitoring patients on ART in southern Africa.
Assuntos
Infecções por HIV/diagnóstico , HIV-1/genética , Testes Imediatos , RNA Viral/sangue , Carga Viral/métodos , Terapia Antirretroviral de Alta Atividade , Botsuana , Estudos Transversais , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , RNA Viral/genética , População Rural , Sensibilidade e Especificidade , Manejo de Espécimes/métodosRESUMO
Semi-parametric methods are often used for the estimation of intervention effects on correlated outcomes in cluster-randomized trials (CRTs). When outcomes are missing at random (MAR), Inverse Probability Weighted (IPW) methods incorporating baseline covariates can be used to deal with informative missingness. Also, augmented generalized estimating equations (AUG) correct for imbalance in baseline covariates but need to be extended for MAR outcomes. However, in the presence of interactions between treatment and baseline covariates, neither method alone produces consistent estimates for the marginal treatment effect if the model for interaction is not correctly specified. We propose an AUG-IPW estimator that weights by the inverse of the probability of being a complete case and allows different outcome models in each intervention arm. This estimator is doubly robust (DR); it gives correct estimates whether the missing data process or the outcome model is correctly specified. We consider the problem of covariate interference which arises when the outcome of an individual may depend on covariates of other individuals. When interfering covariates are not modeled, the DR property prevents bias as long as covariate interference is not present simultaneously for the outcome and the missingness. An R package is developed implementing the proposed method. An extensive simulation study and an application to a CRT of HIV risk reduction-intervention in South Africa illustrate the method.
Assuntos
Análise por Conglomerados , Modelos Estatísticos , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Simulação por Computador , Interpretação Estatística de Dados , Infecções por HIV , Humanos , Risco , Resultado do TratamentoRESUMO
Exogenous Interleukin-7 (IL-7), in supplement to antiretroviral therapy, leads to a substantial increase of all CD4+ T cell subsets in HIV-1 infected patients. However, the quantitative contribution of the several potential mechanisms of action of IL-7 is unknown. We have performed a mathematical analysis of repeated measurements of total and naive CD4+ T cells and their Ki67 expression from HIV-1 infected patients involved in three phase I/II studies (Nâ=â53 patients). We show that, besides a transient increase of peripheral proliferation, IL-7 exerts additional effects that play a significant role in CD4+ T cell dynamics up to 52 weeks. A decrease of the loss rate of the total CD4+ T cell is the most probable explanation. If this effect could be maintained during repeated administration of IL-7, our simulation study shows that such a strategy may allow maintaining CD4+ T cell counts above 500 cells/µL with 4 cycles or fewer over a period of two years. This in-depth analysis of clinical data revealed the potential for IL-7 to achieve sustained CD4+ T cell restoration with limited IL-7 exposure in HIV-1 infected patients with immune failure despite antiretroviral therapy.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Interleucina-7/imunologia , Modelos Imunológicos , Células Cultivadas , Simulação por Computador , Infecções por HIV/patologia , Humanos , Antígeno Ki-67/imunologiaRESUMO
One of the necessary conditions to perform any personalized medicine is to obtain good individual predictions. In addition to the numerous markers available (omics data), the methods used to analyze the data are very important too. We are presenting an example of mathematical dynamical mechanistic model that could be used for adapting the antiretroviral treatment in patients infected by the human immunodeficiency virus. The interest of this type of approach is to build a model based on biological knowledge about the interaction between markers and therefore to allow for a better predictive power.
Assuntos
Modelos Teóricos , Medicina de Precisão , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Azacitidina/farmacocinética , Azacitidina/uso terapêutico , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/virologia , Didesoxinucleosídeos/farmacocinética , Didesoxinucleosídeos/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , HIV-1/fisiologia , Antígenos HLA-B/genética , Humanos , Lamivudina/farmacocinética , Lamivudina/uso terapêutico , Receptores CCR5/genética , Inibidores da Transcriptase Reversa/farmacocinética , Inibidores da Transcriptase Reversa/uso terapêutico , Ligação ViralRESUMO
BACKGROUND: Non-pharmaceutical interventions (NPIs) and vaccines have been widely used to manage the COVID-19 pandemic. However, uncertainty persists regarding the effectiveness of these interventions due to data quality issues, methodological challenges, and differing contextual factors. Accurate estimation of their effects is crucial for future epidemic preparedness. METHODS: To address this, we developed a population-based mechanistic model that includes the impact of NPIs and vaccines on SARS-CoV-2 transmission and hospitalization rates. Our statistical approach estimated all parameters in one step, accurately propagating uncertainty. We fitted the model to comprehensive epidemiological data in France from March 2020 to October 2021. With the same model, we simulated scenarios of vaccine rollout. RESULTS: The first lockdown was the most effective, reducing transmission by 84 % (95 % confidence interval (CI) 83-85). Subsequent lockdowns had diminished effectiveness (reduction of 74 % (69-77) and 11 % (9-18), respectively). A 6 pm curfew was more effective than one at 8 pm (68 % (66-69) vs. 48 % (45-49) reduction), while school closures reduced transmission by 15 % (12-18). In a scenario without vaccines before November 2021, we predicted 159,000 or 168 % (95 % prediction interval (PI) 70-315) more deaths and 1,488,000 or 300 % (133-492) more hospitalizations. If a vaccine had been available after 100 days, over 71,000 deaths (16,507-204,249) and 384,000 (88,579-1,020,386) hospitalizations could have been averted. CONCLUSION: Our results highlight the substantial impact of NPIs, including lockdowns and curfews, in controlling the COVID-19 pandemic. We also demonstrate the value of the 100 days objective of the Coalition for Epidemic Preparedness Innovations (CEPI) initiative for vaccine availability.
Assuntos
COVID-19 , Vacinas , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Controle de Doenças Transmissíveis , Pandemias/prevenção & controle , França/epidemiologiaRESUMO
The persistence of the long-term immune response induced by the heterologous Ad26.ZEBOV, MVA-BN-Filo two-dose vaccination regimen against Ebola has been investigated in several clinical trials. Longitudinal data on IgG-binding antibody concentrations were analyzed from 487 participants enrolled in six Phase I and Phase II clinical trials conducted by the EBOVAC1 and EBOVAC2 consortia. A model based on ordinary differential equations describing the dynamics of antibodies and short- and long-lived antibody-secreting cells (ASCs) was used to model the humoral response from 7 days after the second vaccination to a follow-up period of 2 years. Using a population-based approach, we first assessed the robustness of the model, which was originally estimated based on Phase I data, against all data. Then we assessed the longevity of the humoral response and identified factors that influence these dynamics. We estimated a half-life of the long-lived ASC of at least 15 years and found an influence of geographic region, sex, and age on the humoral response dynamics, with longer antibody persistence in Europeans and women and higher production of antibodies in younger participants.
RESUMO
In response to the COVID-19 pandemic caused by SARS-CoV-2, governments have adopted a wide range of non-pharmaceutical interventions (NPI). These include stringent measures such as strict lockdowns, closing schools, bars and restaurants, curfews, and barrier gestures such as mask-wearing and social distancing. Deciphering the effectiveness of each NPI is critical to responding to future waves and outbreaks. To this end, we first develop a dynamic model of the French COVID-19 epidemics over a one-year period. We rely on a global extended Susceptible-Infectious-Recovered (SIR) mechanistic model of infection that includes a dynamic transmission rate over time. Multilevel data across French regions are integrated using random effects on the parameters of the mechanistic model, boosting statistical power by multiplying integrated observation series. We estimate the parameters using a new population-based statistical approach based on a Kalman filter, used for the first time in analysing real-world data. We then fit the estimated time-varying transmission rate using a regression model that depends on the NPIs while accounting for vaccination coverage, the occurrence of variants of concern (VoC), and seasonal weather conditions. We show that all NPIs considered have an independent significant association with transmission rates. In addition, we show a strong association between weather conditions that reduces transmission in summer, and we also estimate increased transmissibility of VoC.