Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell ; 167(7): 1678-1680, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984719

RESUMO

While we are beginning to appreciate the cellular roles played by long noncoding RNAs, the function of transcripts emerging from repetitive genomic regions remains enigmatic. In this issue, Zovoilis et al. report that the polycomb protein EZH2, upon heat shock, facilitates transcription of stress-responsive genes by inducing the degradation of the transcriptional repressor B2 repeat RNA.


Assuntos
Proteínas do Grupo Polycomb , RNA Longo não Codificante , Genoma , Resposta ao Choque Térmico , Complexo Repressor Polycomb 2
2.
Genes Dev ; 35(1-2): 102-116, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33334821

RESUMO

p53 is an intensely studied tumor-suppressive transcription factor. Recent studies suggest that the RNA-binding protein (RBP) ZMAT3 is important in mediating the tumor-suppressive effects of p53. Here, we globally identify ZMAT3-regulated RNAs and their binding sites at nucleotide resolution in intact colorectal cancer (CRC) cells. ZMAT3 binds to thousands of mRNA precursors, mainly at intronic uridine-rich sequences and affects their splicing. The strongest alternatively spliced ZMAT3 target was CD44, a cell adhesion gene and stem cell marker that controls tumorigenesis. Silencing ZMAT3 increased inclusion of CD44 variant exons, resulting in significant up-regulation of oncogenic CD44 isoforms (CD44v) and increased CRC cell growth that was rescued by concurrent knockdown of CD44v Silencing p53 phenocopied the loss of ZMAT3 with respect to CD44 alternative splicing, suggesting that ZMAT3-mediated regulation of CD44 splicing is vital for p53 function. Collectively, our findings uncover a p53-ZMAT3-CD44 axis in growth suppression in CRC cells.


Assuntos
Processamento Alternativo/genética , Receptores de Hialuronatos/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinogênese/genética , Neoplasias Colorretais/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Células HCT116 , Células HEK293 , Humanos , Receptores de Hialuronatos/metabolismo , Ligação Proteica/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(47): e2210516119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375054

RESUMO

Nearfield spectroscopic imaging techniques can be a powerful tool to map both cellular ultrastructure and molecular composition simultaneously but are currently limited in measurement capability. Resonance enhanced (RE) atomic force microscopy infrared (AFM-IR) spectroscopic imaging offers high-sensitivity measurements, for example, but probe-sample mechanical coupling, nonmolecular optical gradient forces, and noise overwhelm recorded chemical signals. Here, we analyze the key factors limiting AFM-IR measurements and propose an instrument design that enables high-sensitivity nanoscale IR imaging by combining null-deflection measurements with RE sensitivity. Our developed null-deflection scanning probe IR (NDIR) spectroscopic imaging provides ∼24× improvement in signal-to-noise ratio (SNR) compared with the state of the art, enables optimal signal recording by combining cantilever resonance with maximum laser power, and reduces background nonmolecular signals for improved analytical accuracy. We demonstrate the use of these properties for high-sensitivity, hyperspectral imaging of chemical domains in 100-nm-thick sections of cellular acini of a prototypical cancer model cell line, MCF-10A. NDIR chemical imaging enables facile recording of label-free, chemically accurate, high-SNR vibrational spectroscopic data from nanoscale domains, paving the path for routine studies of biomedical, forensic, and materials samples.


Assuntos
Lasers , Espectrofotometria Infravermelho/métodos , Microscopia de Força Atômica/métodos , Linhagem Celular
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217604

RESUMO

BEN domain-containing proteins are emerging rapidly as an important class of factors involved in modulating gene expression, yet the molecular basis of how they regulate chromatin function and transcription remains to be established. BEND3 is a quadruple BEN domain-containing protein that associates with heterochromatin and functions as a transcriptional repressor. We find that BEND3 is highly expressed in pluripotent cells, and the induction of differentiation results in the down-regulation of BEND3. The removal of BEND3 from pluripotent cells results in cells exhibiting upregulation of the differentiation-inducing gene expression signature. We find that BEND3 binds to the promoters of differentiation-associated factors and key cell cycle regulators, including CDKN1A, encoding the cell cycle inhibitor p21, and represses the expression of differentiation-associated genes by enhancing H3K27me3 decoration at these promoters. Our results support a model in which transcription repression mediated by BEND3 is essential for normal development and to prevent differentiation.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes/citologia , Proteínas Repressoras/fisiologia , Quadruplex G , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas
5.
Proc Natl Acad Sci U S A ; 119(22): e2121406119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622890

RESUMO

In eukaryotes, the origin recognition complex (ORC) is required for the initiation of DNA replication. The smallest subunit of ORC, Orc6, is essential for prereplication complex (pre-RC) assembly and cell viability in yeast and for cytokinesis in metazoans. However, unlike other ORC components, the role of human Orc6 in replication remains to be resolved. Here, we identify an unexpected role for hOrc6, which is to promote S-phase progression after pre-RC assembly and DNA damage response. Orc6 localizes at the replication fork and is an accessory factor of the mismatch repair (MMR) complex. In response to oxidative damage during S phase, often repaired by MMR, Orc6 facilitates MMR complex assembly and activity, without which the checkpoint signaling is abrogated. Mechanistically, Orc6 directly binds to MutSα and enhances the chromatin-association of MutLα, thus enabling efficient MMR. Based on this, we conclude that hOrc6 plays a fundamental role in genome surveillance during S phase.


Assuntos
Reparo de Erro de Pareamento de DNA , Complexo de Reconhecimento de Origem , Fase S , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas MutL/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica
6.
Anal Chem ; 95(6): 3349-3357, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36574385

RESUMO

Cell cycle progression plays a vital role in regulating proliferation, metabolism, and apoptosis. Three-dimensional (3D) cell cultures have emerged as an important class of in vitro disease models, and incorporating the variation occurring from cell cycle progression in these systems is critical. Here, we report the use of Fourier transform infrared (FT-IR) spectroscopic imaging to identify subtle biochemical changes within cells, indicative of the G1/S and G2/M phases of the cell cycle. Following previous studies, we first synchronized samples from two-dimensional (2D) cell cultures, confirmed their states by flow cytometry and DNA quantification, and recorded spectra. We determined two critical wavenumbers (1059 and 1219 cm-1) as spectral indicators of the cell cycle for a set of isogenic breast cancer cell lines (MCF10AT series). These two simple spectral markers were then applied to distinguish cell cycle stages in a 3D cell culture model using four cell lines that represent the main stages of cancer progression from normal cells to metastatic disease. Temporal dependence of spectral biomarkers during acini maturation validated the hypothesis that the cells are more proliferative in the early stages of acini development; later stages of the culture showed stability in the overall composition but unique spatial differences in cells in the two phases. Altogether, this study presents a computational and quantitative approach for cell phase analysis in tissue-like 3D structures without any biomarker staining and provides a means to characterize the impact of the cell cycle on 3D biological systems and disease diagnostic studies using IR imaging.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectrofotometria Infravermelho , Ciclo Celular , Divisão Celular , Células MCF-7
7.
Mamm Genome ; 33(2): 402-411, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34436664

RESUMO

The nucleolus is the largest sub-nuclear domain, serving primarily as the place for ribosome biogenesis. A delicately regulated function of the nucleolus is vital to the cell not only for maintaining proper protein synthesis but is also tightly associated with responses to different types of cellular stresses. Recently, several long non-coding RNAs (lncRNAs) were found to be part of the regulatory network that modulate nucleolar functions. Several of these lncRNAs are encoded in the ribosomal DNA (rDNA) repeats or are transcribed from the genomic regions that are located near the nucleolus organizer regions (NORs). In this review, we first discuss the current understanding of the sequence of the NORs and variations between different NORs. We then focus on the NOR-derived lncRNAs in mammalian cells and their functions in rRNA transcription and the organization of nucleolar structure under different cellular conditions. The identification of these lncRNAs reveals great potential of the NORs in harboring novel genes involved in the regulation of nucleolar functions.


Assuntos
Região Organizadora do Nucléolo , RNA Longo não Codificante , Animais , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Mamíferos/genética , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcrição Gênica
8.
RNA ; 26(2): 175-185, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31690584

RESUMO

Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer (BC) subtypes with a poor prognosis and high recurrence rate. Recent studies have identified vital roles played by several lncRNAs (long noncoding RNAs) in BC pathobiology. Cell type-specific expression of lncRNAs and their potential role in regulating the expression of oncogenic and tumor suppressor genes have made them promising cancer drug targets. By performing a transcriptome screen in an isogenic TNBC/basal subtype BC progression cell line model, we recently reported ∼1800 lncRNAs that display aberrant expression during breast cancer progression. Mechanistic studies on one such nuclear-retained lncRNA, linc02095, reveal that it promotes breast cancer proliferation by facilitating the expression of oncogenic transcription factor, SOX9. Both linc02095 and SOX9 display coregulated expression in BC patients as well in basal subtype BC cell lines. Knockdown of linc02095 results in decreased BC cell proliferation, whereas its overexpression promotes cells proliferation. Linc02095-depleted cells display reduced expression of SOX9 concomitant with reduced RNA polymerase II occupancy at the SOX9 gene body as well as defective SOX9 mRNA export, implying that linc02095 positively regulates SOX9 transcription and mRNA export. Finally, we identify a positive feedback loop in BC cells that controls the expression of both linc02095 and SOX9 Thus, our results unearth tumor-promoting activities of a nuclear lncRNA linc02095 by facilitating the expression of key oncogenic transcription factor in BC.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOX9/genética , Neoplasias de Mama Triplo Negativas/genética , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Perfilação da Expressão Gênica , Humanos , Transcriptoma , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima
9.
RNA ; 26(11): 1603-1620, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32675111

RESUMO

Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.


Assuntos
Perfilação da Expressão Gênica/métodos , Pulmão/citologia , RNA Longo não Codificante/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Soro/química , Ciclo Celular , Linhagem Celular , Fibroblastos/química , Fibroblastos/citologia , Células HEK293 , Humanos , Pulmão/química , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , Análise de Sequência de RNA , Imagem Individual de Molécula , Regulação para Cima , Sequenciamento do Exoma
10.
Trends Genet ; 34(2): 142-157, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29249332

RESUMO

A significant portion of the human genome encodes genes that transcribe long nonprotein-coding RNAs (lncRNAs). A large number of lncRNAs localize in the nucleus, either enriched on the chromatin or localized to specific subnuclear compartments. Nuclear lncRNAs participate in several biological processes, including chromatin organization, and transcriptional and post-transcriptional gene expression, and also act as structural scaffolds of nuclear domains. Here, we highlight recent studies demonstrating the role of lncRNAs in regulating gene expression and nuclear organization in mammalian cells. In addition, we update current knowledge about the involvement of the most-abundant and conserved lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), in gene expression control.


Assuntos
Núcleo Celular/genética , Cromatina/química , Neoplasias/genética , RNA Longo não Codificante/genética , Transcrição Gênica , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Inativação do Cromossomo X
11.
Proc Natl Acad Sci U S A ; 115(52): 13282-13287, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530694

RESUMO

RING finger and WD repeat domain-containing protein 3 (RFWD3) is an E3 ligase known to facilitate homologous recombination by removing replication protein A (RPA) and RAD51 from DNA damage sites. Further, RPA-mediated recruitment of RFWD3 to stalled replication forks is essential for interstrand cross-link repair. Here, we report that in unperturbed human cells, RFWD3 localizes at replication forks and associates with proliferating cell nuclear antigen (PCNA) via its PCNA-interacting protein (PIP) motif. PCNA association is critical for the stability of RFWD3 and for DNA replication. Cells lacking RFWD3 show slower fork progression, a prolonged S phase, and an increase in the loading of several replication-fork components on the chromatin. These findings all point to increased frequency of stalled forks in the absence of RFWD3. The S-phase defect is rescued by WT RFWD3, but not by the PIP mutant, suggesting that the interaction of RFWD3 with PCNA is critical for DNA replication. Finally, we observe reduced ubiquitination of RPA in cells lacking RFWD3. We conclude that the stabilization of RFWD3 by PCNA at the replication fork enables the polyubiquitination of RPA and its subsequent degradation for proper DNA replication.


Assuntos
Replicação do DNA , Instabilidade Genômica , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Células HeLa , Humanos , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Estabilidade Proteica , Ubiquitina-Proteína Ligases/metabolismo
12.
PLoS Genet ; 14(11): e1007802, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496290

RESUMO

The human genome encodes thousands of long noncoding RNA (lncRNA) genes; the function of majority of them is poorly understood. Aberrant expression of a significant number of lncRNAs is observed in various diseases, including cancer. To gain insights into the role of lncRNAs in breast cancer progression, we performed genome-wide transcriptome analyses in an isogenic, triple negative breast cancer (TNBC/basal-like) progression cell lines using a 3D cell culture model. We identified significantly altered expression of 1853 lncRNAs, including ~500 natural antisense transcript (NATs) lncRNAs. A significant number of breast cancer-deregulated NATs displayed co-regulated expression with oncogenic and tumor suppressor protein-coding genes in cis. Further studies on one such NAT, PDCD4-AS1 lncRNA reveal that it positively regulates the expression and activity of the tumor suppressor PDCD4 in mammary epithelial cells. Both PDCD4-AS1 and PDCD4 show reduced expression in TNBC cell lines and in patients, and depletion of PDCD4-AS1 compromised the cellular levels and activity of PDCD4. Further, tumorigenic properties of PDCD4-AS1-depleted TNBC cells were rescued by exogenous expression of PDCD4, implying that PDCD4-AS1 acts upstream of PDCD4. Mechanistically, PDCD4-AS1 stabilizes PDCD4 RNA by forming RNA duplex and controls the interaction between PDCD4 RNA and RNA decay promoting factors such as HuR. Our studies demonstrate crucial roles played by NAT lncRNAs in regulating post-transcriptional gene expression of key oncogenic or tumor suppressor genes, thereby contributing to TNBC progression.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Estabilidade de RNA , RNA Antissenso/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Proteínas de Ligação a RNA/genética , Neoplasias de Mama Triplo Negativas/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Ligação Proteica , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
13.
Mol Cell ; 45(2): 141-2, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22284672

RESUMO

In this issue of Molecular Cell, Audas et al. (2012) demonstrate that a class of stress-induced noncoding RNAs immobilizes proteins in the nucleolus in response to a specific stimulus.

14.
Nucleic Acids Res ; 46(19): 10405-10416, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30102375

RESUMO

Long non-coding RNAs (lncRNAs) regulate vital biological processes, including cell proliferation, differentiation and development. A subclass of lncRNAs is synthesized from microRNA (miRNA) host genes (MIRHGs) due to pre-miRNA processing, and are categorized as miRNA-host gene lncRNAs (lnc-miRHGs). Presently, the cellular function of most lnc-miRHGs is not well understood. We demonstrate a miRNA-independent role for a nuclear-enriched lnc-miRHG in cell cycle progression. MIR100HG produces spliced and stable lncRNAs that display elevated levels during the G1 phase of the cell cycle. Depletion of MIR100HG-encoded lncRNAs in human cells results in aberrant cell cycle progression without altering the levels of miRNA encoded within MIR100HG. Notably, MIR100HG interacts with HuR/ELAVL1 as well as with several HuR-target mRNAs. Further, MIR100HG-depleted cells show reduced interaction between HuR and three of its target mRNAs, indicating that MIR100HG facilitates interaction between HuR and target mRNAs. Our studies have unearthed novel roles played by a MIRHG-encoded lncRNA in regulating RNA binding protein activity, thereby underscoring the importance of determining the function of several hundreds of lnc-miRHGs that are present in human genome.


Assuntos
Ciclo Celular/genética , Proteína Semelhante a ELAV 1/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Diferenciação Celular/genética , Divisão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
15.
J Cell Sci ; 130(24): 4180-4192, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29133588

RESUMO

Nuclear speckles are self-assembled organelles composed of RNAs and proteins. They are proposed to act as structural domains that control distinct steps in gene expression, including transcription, splicing and mRNA export. Earlier studies identified differential localization of a few components within the speckles. It was speculated that the spatial organization of speckle components might contribute directly to the order of operations that coordinate distinct processes. Here, by performing multi-color structured illumination microscopy, we characterized the multilayer organization of speckles at a higher resolution. We found that SON and SC35 (also known as SRSF2) localize to the central region of the speckle, whereas MALAT1 and small nuclear (sn)RNAs are enriched at the speckle periphery. Coarse-grained simulations indicate that the non-random organization arises due to the interplay between favorable sequence-encoded intermolecular interactions of speckle-resident proteins and RNAs. Finally, we observe positive correlation between the total amount of RNA present within a speckle and the speckle size. These results imply that speckle size may be regulated to accommodate RNA accumulation and processing. Accumulation of RNA from various actively transcribed speckle-associated genes could contribute to the observed speckle size variations within a single cell.


Assuntos
Núcleo Celular/genética , Proteínas de Ligação a DNA/genética , Antígenos de Histocompatibilidade Menor/genética , Organelas/genética , RNA Longo não Codificante/genética , Fatores de Processamento de Serina-Arginina/genética , Núcleo Celular/ultraestrutura , Regulação da Expressão Gênica , Células HeLa , Humanos , Organelas/ultraestrutura , Proteínas/genética , RNA/genética , RNA Nucleolar Pequeno/genética
16.
Nucleic Acids Res ; 45(5): 2490-2502, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27924004

RESUMO

DNA replication requires the recruitment of a pre-replication complex facilitated by Origin Recognition Complex (ORC) onto the chromatin during G1 phase of the cell cycle. The ORC-associated protein (ORCA/LRWD1) stabilizes ORC on chromatin. Here, we evaluated the genome-wide distribution of ORCA using ChIP-seq during specific time points of G1. ORCA binding sites on the G1 chromatin are dynamic and temporally regulated. ORCA association to specific genomic sites decreases as the cells progressed towards S-phase. The majority of the ORCA-bound sites represent replication origins that also associate with the repressive chromatin marks H3K9me3 and methylated-CpGs, consistent with ORCA-bound origins initiating DNA replication late in S-phase. Further, ORCA directly associates with the repressive marks and interacts with the enzymes that catalyze these marks. Regions that associate with both ORCA and H3K9me3, exhibit diminished H3K9 methylation in ORCA-depleted cells, suggesting a role for ORCA in recruiting the H3K9me3 mark at certain genomic loci. Similarly, DNA methylation is altered at ORCA-occupied sites in cells lacking ORCA. Furthermore, repressive chromatin marks influence ORCA's binding on chromatin. We propose that ORCA coordinates with the histone and DNA methylation machinery to establish a repressive chromatin environment at a subset of origins, which primes them for late replication.


Assuntos
Fase G1/genética , Heterocromatina/metabolismo , Proteínas dos Microtúbulos/metabolismo , Origem de Replicação , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Replicação do DNA , Código das Histonas , Humanos
17.
Nucleic Acids Res ; 45(7): 4189-4201, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28053121

RESUMO

Adenosine deaminases acting on RNA (ADARs) catalyze the editing of adenosine residues to inosine (A-to-I) within RNA sequences, mostly in the introns and UTRs (un-translated regions). The significance of editing within non-coding regions of RNA is poorly understood. Here, we demonstrate that association of ADAR2 with RNA stabilizes a subset of transcripts. ADAR2 interacts with and edits the 3΄UTR of nuclear-retained Cat2 transcribed nuclear RNA (Ctn RNA). In absence of ADAR2, the abundance and half-life of Ctn RNA are significantly reduced. Furthermore, ADAR2-mediated stabilization of Ctn RNA occurred in an editing-independent manner. Unedited Ctn RNA shows enhanced interaction with the RNA-binding proteins HuR and PARN [Poly(A) specific ribonuclease deadenylase]. HuR and PARN destabilize Ctn RNA in absence of ADAR2, indicating that ADAR2 stabilizes Ctn RNA by antagonizing its degradation by PARN and HuR. Transcriptomic analysis identified other RNAs that are regulated by a similar mechanism. In summary, we identify a regulatory mechanism whereby ADAR2 enhances target RNA stability by limiting the interaction of RNA-destabilizing proteins with their cognate substrates.


Assuntos
Adenosina Desaminase/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Exorribonucleases/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Animais , Transportador 2 de Aminoácidos Catiônicos/genética , Transportador 2 de Aminoácidos Catiônicos/metabolismo , Camundongos , Edição de RNA , RNA Longo não Codificante/metabolismo
18.
J Cell Sci ; 129(2): 417-29, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26644179

RESUMO

In eukaryotes, origin recognition complex (ORC) proteins establish the pre-replicative complex (preRC) at the origins, and this is essential for the initiation of DNA replication. Open chromatin structures regulate the efficiency of preRC formation and replication initiation. However, the molecular mechanisms that control chromatin structure, and how the preRC components establish themselves on the chromatin remain to be understood. In human cells, the ORC is a highly dynamic complex with many separate functions attributed to sub-complexes or individual subunits of the ORC, including heterochromatin organization, telomere and centromere function, centrosome duplication and cytokinesis. We demonstrate that human Orc5, unlike other ORC subunits, when ectopically tethered to a chromatin locus, induces large-scale chromatin decondensation, predominantly during G1 phase of the cell cycle. Orc5 associates with the H3 histone acetyl transferase GCN5 (also known as KAT2A), and this association enhances the chromatin-opening function of Orc5. In the absence of Orc5, histone H3 acetylation is decreased at the origins. We propose that the ability of Orc5 to induce chromatin unfolding during G1 allows the establishment of the preRC at the origins.


Assuntos
Montagem e Desmontagem da Cromatina , Complexo de Reconhecimento de Origem/fisiologia , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Linhagem Celular Tumoral , Epigênese Genética , Fase G1 , Histonas/metabolismo , Humanos , Domínios Proteicos , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional
19.
Mol Cell ; 40(1): 99-111, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20932478

RESUMO

Origin recognition complex (ORC) plays critical roles in the initiation of DNA replication and cell-cycle progression. In metazoans, ORC associates with origin DNA during G1 and with heterochromatin in postreplicated cells. However, what regulates the binding of ORC to chromatin is not understood. We have identified a highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. We demonstrate that ORCA efficiently recruits ORC to chromatin. Depletion of ORCA in human primary cells and embryonic stem cells results in loss of ORC association to chromatin, concomitant reduction of MCM binding, and a subsequent accumulation in G1 phase. Our results suggest ORCA-mediated association of ORC to chromatin is critical to initiate preRC assembly in G1 and chromatin organization in post-G1 cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sequência Conservada , Imunofluorescência , Humanos , Imunoprecipitação , Microscopia de Vídeo , Dados de Sequência Molecular , Mutação , Complexo de Reconhecimento de Origem/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Proteína Sequestossoma-1 , Fatores de Tempo , Transfecção
20.
Mol Cell ; 39(6): 925-38, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20797886

RESUMO

Alternative splicing (AS) of pre-mRNA is utilized by higher eukaryotes to achieve increased transcriptome and proteomic complexity. The serine/arginine (SR) splicing factors regulate tissue- or cell-type-specific AS in a concentration- and phosphorylation-dependent manner. However, the mechanisms that modulate the cellular levels of active SR proteins remain to be elucidated. In the present study, we provide evidence for a role for the long nuclear-retained regulatory RNA (nrRNA), MALAT1 in AS regulation. MALAT1 interacts with SR proteins and influences the distribution of these and other splicing factors in nuclear speckle domains. Depletion of MALAT1 or overexpression of an SR protein changes the AS of a similar set of endogenous pre-mRNAs. Furthermore, MALAT1 regulates cellular levels of phosphorylated forms of SR proteins. Taken together, our results suggest that MALAT1 regulates AS by modulating the levels of active SR proteins. Our results further highlight the role for an nrRNA in the regulation of gene expression.


Assuntos
Processamento Alternativo/genética , Proteínas Nucleares/metabolismo , RNA não Traduzido/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Espaço Intranuclear/metabolismo , Camundongos , Antígenos de Histocompatibilidade Menor , Mitose/genética , Proteínas Nucleares/genética , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Fatores de Processamento de Serina-Arginina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA