Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ecol Lett ; 21(10): 1467-1476, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30039540

RESUMO

The canonical factors typically thought to determine herbivore community structure often explain only a small fraction of the variation in herbivore abundance and diversity. We tested how macronutrients and relatively understudied micronutrients interacted to influence the structure of insect herbivore (orthopteran) communities. We conducted a factorial fertilisation experiment manipulating macronutrients (N and P, added together) and micronutrients (Ca, Na and K) in large plots (30 × 30 m2 ) in a Texas coastal prairie. Although no single or combination of micronutrients affected herbivore communities in the absence of additional macronutrients, macronutrients and sodium added together increased herbivore abundance by 60%, richness by 15% and diversity by 20%. These results represent the first large-scale manipulation of single micronutrients and macronutrients in concert, and revealed an herbivore community co-limited by macronutrients and Na. Our work supports an emerging paradigm that Na may be important in limiting herbivore communities.


Assuntos
Herbivoria , Insetos , Sódio , Animais , Ecossistema , Pradaria , Nutrientes , Texas
2.
BMC Plant Biol ; 18(1): 91, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29788911

RESUMO

BACKGROUND: The reasons that clonal plants shift between sexual and clonal reproduction have persisted as a knowledge gap in ecological literature. We hypothesized that clonal plants' shifts between sexual and clonal reproduction in different environments are driven by the relative costs of sexual and clonal reproduction. Moreover, we hypothesized plants prioritize sexual reproduction over clonal reproduction. To test these hypotheses, we determined the costs of sexual and clonal reproduction, and proportions of sexual and clonal reproduction of Caragana stenophylla along a climatic aridity gradient (semi-arid, arid, very arid and intensively arid zones) in the Inner Mongolia Steppe using several complementary field experiments. RESULTS: The cost of sexual reproduction increased while the cost of clonal reproduction decreased as climatic drought stress increased from the semi-arid to the intensively arid zones. The changes in the costs of these reproductive modes drove a shift in the reproductive mode of C. stenophylla from more sexual reproduction in the semi-arid zone to more clonal propagation in the intensively arid zone. However, because of the evolutionary advantages of sexual reproduction, sexual reproduction still held priority over clonal production in C. stenophylla, with the priority of sexual reproduction gradually increasing from the semi-arid to the intensively arid zones. CONCLUSIONS: Our study suggested that sexual reproduction has relatively high priority in propagation of C. stenophylla. However, if the costs of sexual reproduction are too high, C. stenophylla likely chooses clonal reproduction, and the ratio between sexual and clonal reproduction could be mediated by reproductive cost. These reproductive strategies reflect optimal resource utilization, and allow the persistence of both reproductive modes across stressful conditions depending on their evolutionary advantages.


Assuntos
Caragana/fisiologia , Caragana/genética , China , Evolução Clonal , Clima Desértico , Secas , Reprodução
3.
Ecology ; 99(4): 782-791, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603190

RESUMO

Consumers can alter decomposition rates through both feces and selective feeding in many ecosystems, but these combined effects have seldom been examined in tropical ecosystems. Members of the detrital food web (litter-feeders or microbivores) should presumably have greater effects on decomposition than herbivores, members of the green food web. Using litterbag experiments within a field enclosure experiment, we determined the relative effects of common litter snails (Megalomastoma croceum) and herbivorous walking sticks (Lamponius portoricensis) on litter composition, decomposition rates, and microbes in a Puerto Rican rainforest, and whether consumer effects were altered by canopy cover presence. Although canopy presence did not alter consumers' effects, focal organisms had unexpected influences on decomposition. Decomposition was not altered by litter snails, but herbivorous walking sticks reduced leaf decomposition by about 50% through reductions in high quality litter abundance and, consequently, lower bacterial richness and abundance. This relatively unexplored but potentially important link between tropical herbivores, detritus, and litter microbes in this forest demonstrates the need to consider autotrophic influences when examining rainforest ecosystem processes.


Assuntos
Ecossistema , Herbivoria , Animais , Bactérias , Folhas de Planta , Porto Rico , Caramujos , Árvores
4.
J Anim Ecol ; 87(6): 1727-1737, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102785

RESUMO

Understanding how biodiversity affects ecosystem processes is a key question in ecology. Previous research has found that increasing plant diversity often enhances many ecosystem processes, but less is known about the role of consumer diversity to ecosystem processes, especially in terrestrial ecosystems. Furthermore, we do not know how general biodiversity responses are among ecosystem types. We examined the role of insect herbivore (Orthoptera) diversity on plant production using parallel field experiments in three grassland ecosystems (mixed grass prairie, tallgrass prairie and coastal tallgrass prairie) to determine whether the effects of grasshopper diversity were consistent among sites. Using mesocosms, we manipulated orthopteran species richness (0, 1, 2, 3 or 4 species), functional richness (number of functional feeding groups present; 0, 1 or 2 functional groups) and functional composition (composition of functional groups present; mixed-feeders only, grass-feeders only, both mixed-feeders and grass-feeders). Diversity treatments were maintained throughout the experiment by replacing dead individuals. Plant biomass was destructively sampled at the end of the experiment. We found no effect of species richness or functional richness on plant biomass. However, herbivore functional composition was important, and effects were qualitatively similar across sites: The presence of only grass-feeding species reduced plant biomass more than either mixed-feeding species alone or both groups together. Orthopterans had consistent effects across a range of abiotic conditions, as well as different plant community and orthopteran community compositions. Our results suggest that functional composition of insect herbivores affects plant communities in grasslands more than herbivore species richness or functional richness, and this pattern was robust among grassland types.


Assuntos
Ecossistema , Gafanhotos , Animais , Biodiversidade , Biomassa , Pradaria , Herbivoria
5.
Ecol Evol ; 11(22): 16314-16326, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824829

RESUMO

Large herbivores often co-occur and share plant resources with herbivorous insects in grassland ecosystems; yet, how they interact with each other remains poorly understood. We conducted a series of field experiments to investigate whether and how large domestic herbivores (sheep; Ovis aries) may affect the abundance of a common herbivorous insect (aphid; Hyalopterus pruni) in a temperate grassland of northeast China. Our exclosure experiment showed that 3 years (2010-2012) of sheep grazing had led to 86% higher aphid abundance compared with ungrazed sites. Mechanistically, this facilitative effect was driven by grazing altering the plant community, rather than by changes in food availability and predator abundance for aphids. Sheep significantly altered plant community by reducing the abundance of unpalatable forbs for the aphids. Our small-scale forb removal experiment revealed an "associational plant defense" by forbs which protect the grass Phragmites australis from being attacked by the aphids. However, selective grazing on forbs by sheep indirectly disrupted such associational plant defense, making P. australis more susceptible to aphids, consequentially increasing the density of aphids. These findings provide a novel mechanistic explanation for the effects of large herbivores on herbivorous insects by linking selective grazing to plant community composition and the responses of insect populations in grassland ecosystems.

6.
Ecology ; 102(2): e03263, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314072

RESUMO

Nitrogen and phosphorus are thought to be the most important limiting nutrients in most terrestrial ecosystems, but little is known about how other elements may limit the abundance of arthropods. We utilized a fully factorial fertilization experiment that manipulated macronutrients (N and P, together) and micronutrients (calcium, sodium, potassium, separately), in large 30 × 30 m plots and sampled litter arthropods via pitfall trapping to determine the nutrients that limit this group. An invasive ant, Nylanderia fulva, numerically dominated the community and increased in abundance 13% in plots fertilized by Ca. Detritivores were not limited by any nutrient combination, but macronutrients increased predator abundance 43%. We also found that some combinations of macronutrients and micronutrients had toxic or stressful effects on the arthropod community: detritivores decreased in abundance 23% with the combination of macronutrients, Ca, and K, and 22% with macronutrients and K; and N. fulva decreased in abundance 24% in plots fertilized by K and 45% in plots fertilized by the combination of Na and K. Our work supports growing evidence that micronutrients, especially Ca and K, may be important in structuring grassland arthropod communities, and suggests that micronutrients may affect whether or not invasive ants reach numerical dominance.


Assuntos
Formigas , Artrópodes , Animais , Cálcio , Ecossistema , Cadeia Alimentar , Pradaria , Micronutrientes , Nutrientes
7.
Front Microbiol ; 11: 557980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193141

RESUMO

Insect gut microbiomes consist of bacteria, fungi, and viruses that can act as mutualists to influence the health and fitness of their hosts. While much has been done to increase understanding of the effects of environmental factors that drive insect ecology, there is less understanding of the effects of environmental factors on these gut microbial communities. For example, the effect of environmental nutrients on most insect gut microbiomes is poorly defined. To address this knowledge gap, we investigated the relationship between environmental nutrients and the gut microbial communities in a small study of katydids (n = 13) of the orthopteran species Orchelimum vulgare collected from a costal prairie system. We sampled O. vulgare from unfertilized plots, as well as from plots fertilized with added nitrogen and phosphorus or sodium separately and in combination. We found significantly higher Shannon diversity for the gut bacterial communities in O. vulgare from plots fertilized with added sodium as compared to those collected from plots without added sodium. In contrast, diversity was significantly lower in the gut fungal communities of grasshoppers collected from plots with added nitrogen and phosphorus, as well as those with added sodium, in comparison to those with no added nutrients. There was also a strong positive correlation between the gut bacterial and gut fungal community diversity within each sample. Indicator group analysis for added sodium plots included several taxa with known salt-tolerant bacterial and fungal representatives. Therefore, despite the small sample number, these results highlight the potential for the gut bacterial and fungal constituents to respond differently to changes in environmental nutrient levels. Future studies with a larger sample size will help identify mechanistic determinants driving these changes. Based on our findings and the potential contribution of gut microbes to insect fitness and function, consideration of abiotic factors like soil nutrients along with characteristic gut microbial groups is necessary for better understanding and conservation of this important insect herbivore.

8.
PLoS One ; 15(1): e0228406, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999781

RESUMO

Insect microbiomes play an important role in the health and fitness of insect hosts by contributing to nutrient absorption, immune health, and overall ecological fitness. As such, research interests in insect microbiomes have focused on agriculturally and industrially important organisms such as honey bees and termites. Orthopterans, on the other hand, have not been well explored for their resident microbial communities. Grasshoppers are an integral part of grassland ecosystems and provide important ecosystem services. Conversely, grasshoppers can be an agricultural pest requiring management with broad spectrum pesticides. However, little is known about the microbiomes of grasshoppers and their potential contribution to grasshopper biology. Here we examine the gut microbiome of six species of grasshoppers (n = 60) from a coastal tallgrass prairie ecosystem to gain a better understanding of the microbial communities present across the orthopteran order in this ecosystem. We found that there are bacterial phyla common to all six grasshopper species: Actinobacteria, Proteobacteria, Firmicutes, and to a lesser degree, Tenericutes. Although the grasshopper species shared a high relative abundance of these groups, there were notable shifts in dominant phyla depending on the grasshopper species. Moreover, measures of alpha diversity revealed a more diverse microbiome in males than females. Our observations support the hypothesis that there is a "core" group of bacterial families in these grasshopper species and factors such as trophic behaviors and the evolution of the host may contribute to the shifts in prevalence among these core microbial groups.


Assuntos
Bactérias/classificação , Gafanhotos/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Microbioma Gastrointestinal , Gafanhotos/classificação , Pradaria , Masculino , Filogenia , Caracteres Sexuais , Especificidade da Espécie
9.
Ecol Evol ; 9(13): 7652-7659, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346429

RESUMO

Consumer effects on rainforest primary production are often considered negligible because herbivores and macrodetritivores usually consume a small fraction of annual plant and litter production, even though consumers are known to have effects on plant production and composition in nontropical systems. Disturbances, such as treefall gaps, however, often increase resources to understory food webs, thereby increasing herbivory and feeding rates of detritivores. This increase in consumption could lead to more prominent ecosystem-level effects of consumers after disturbances, such as storms that cause light gaps. We determined how the effects of invertebrate herbivores (walking sticks) and detritivores (litter snails) on understory plant growth may be altered by disturbances in a Puerto Rican rainforest using an enclosure experiment. Consumers had significant effects on plant growth, but only in light gaps. Specifically, herbivores increased plant growth by 60%, and there was a trend for detritivores to reduce plant growth. Additionally, plant biomass tended to be 50% higher with both consumers in combination, suggesting that herbivores may mediate the effects of detritivores by altering the resources available to detritivore food webs. This study demonstrates that disturbance alters the effects of rainforest consumers, and, furthermore, that consumer activity has the potential to change rainforest successional processes.

10.
Ecol Evol ; 7(19): 8032-8039, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043054

RESUMO

Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree (Tridacia sebifera) are present surrounding a native woody plant (Myrica cerifera); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid-dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20-30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.

11.
Biol Open ; 6(10): 1569-1574, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912357

RESUMO

Woody encroachment in grasslands has become increasingly problematic globally. Grazing by domestic animals can facilitate woody encroachment by reducing competition from herbaceous plants and fire frequency. Herbivorous insects and parasitic plants can each exert forces that result in the natural biological control of encroaching woody plants through reducing seeding of their host woody plants. However, the interplay of grazing and dynamics of herbivorous insects or parasitic plants, and its effects on the potential biological control of woody encroachment in grasslands remains unclear. We investigated the flower and pod damage by herbivorous insects, and the infection rates of a parasitic plant on the shrub Caragana microphylla, which is currently encroaching in Inner Mongolia Steppe, under different grazing management treatments (33-year non-grazed, 7-year non-grazed, currently grazed). Our results showed that Caragana biomass was highest at the currently grazed site, and lowest at the 33-year non-grazed site. Herbaceous plant biomass followed the opposite pattern, suggesting that grazing is indeed facilitating the encroachment of Caragana plants in Inner Mongolia Steppe. Grazing also reduced the abundance of herbivorous insects per Caragana flower, numbers of flowers and pods damaged by insect herbivores, and the infection rates of the parasitic plant on Caragana plants. Our results suggest that grazing may facilitate woody encroachment in grasslands not only through canonical mechanisms (e.g. competitive release via feeding on grasses, reductions in fires, etc.), but also by limiting natural biological controls of woody plants (herbivorous insects and parasitic plants). Thus, management efforts must focus on preventing overgrazing to better protect grassland ecosystems from woody encroachment.

12.
Biol Rev Camb Philos Soc ; 88(2): 327-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23217156

RESUMO

The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate.


Assuntos
Mudança Climática , Ecossistema , Invertebrados/fisiologia , Animais , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA