Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(24): 28186-28198, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35695394

RESUMO

The subwavelength confinement of light energy in the nanogaps formed between adjacent plasmonic nanostructures provides the foundational basis for nanophotonic applications. Within this realm, air-filled nanogaps are of central importance because they present a cavity where application-specific nanoscale objects can reside. When forming such configurations on substrate surfaces, there is an inherent difficulty in that the most technologically relevant nanogap widths require closely spaced nanostructures separated by distances that are inaccessible through standard electron-beam lithography techniques. Herein, we demonstrate an assembly route for the fabrication of aligned plasmonic gold trimers with air-filled vertical nanogaps having widths that are defined with spatial controls that exceed those of lithographic processes. The devised procedure uses a sacrificial oxide layer to define the nanogap, a glancing angle deposition to impose a directionality on trimer formation, and a sacrificial antimony layer whose sublimation regulates the gold assembly process. By further implementing a benchtop nanoimprint lithography process and a glancing angle ion milling procedure as additional controls over the assembly, it is possible to deterministically position trimers in periodic arrays and extend the assembly process to dimer formation. The optical response of the structures, which is characterized using polarization-dependent spectroscopy, surface-enhanced Raman scattering, and refractive index sensitivity measurements, shows properties that are consistent with simulation. This work, hence, forwards the wafer-based processing techniques needed to form air-filled nanogaps and place plasmonic energy at site-specific locations.

2.
Front Chem ; 6: 411, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250842

RESUMO

Micro- and nanoscale ZnO tetrapods provide an attractive support for metallic nanostructures since they can be inexpensively produced using the flame transport method and nanoparticle synthesis schemes can take advantage of a coupled response facilitated by the formation of a semiconductor-metal interface. Here, we present a light-mediated solution-based growth mode capable of decorating the surface of ZnO tetrapods with nanostructures of gold, silver, copper, platinum, palladium, ruthenium, iridium, and rhodium. It involves two coupled reactions that are driven by the optical excitation of electron-hole pairs in the ZnO semiconductor by ultraviolet photons where the excited electrons are used to reduce aqueous metal ions onto the ZnO tetrapod as excited holes are scavenged from the surface. For the most part, the growth mode gives rise to nanoparticles with a roundish morphology that are uniformly distributed on the tetrapod surface. Larger structures with irregular shapes are, however, obtained for syntheses utilizing aqueous metal nitrates as opposed to chlorides, a result that suggests that the anion plays a role in shape determination. It is also demonstrated that changes to the molarity of the metal ion can influence the nanostructure nucleation rate. The catalytic activity of tetrapods decorated with each of the eight metals is assessed using the reduction of 4-nitrophenol by borohydride as a model reaction where it is shown that those decorated with Pd, Ag, and Rh are the most active.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA