Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(1): 61-66, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113396

RESUMO

The decay of excited states via radiative and nonradiative paths is well understood in molecules and bulk semiconductors but less so in nanocrystals. Here, we perform time-resolved photoluminescence (t-PL) experiments on CsPbBr3 metal-halide perovskite nanocrystals, with a time resolution of 3 ps, sufficient to observe the decay of both excitons and biexcitons as a function of temperature. The striking result is that the radiative rate constant of the single exciton increases at low temperatures with an exponential functional form, suggesting quantum coherent effects with dephasing at high temperatures. The opposing directions of the radiative and nonradiative decay rate constants enable enhanced brightening of PL from excitons to biexcitons due to quantum effects, promoting a faster approach to the quantum theoretical limits of light emission. Ab initio quantum dynamics simulations reproduce the experimental observations of radiation controlled by quantum spatial coherence enhanced at low temperatures.

2.
Nano Lett ; 24(12): 3638-3646, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498912

RESUMO

Tin-based two-dimensional (2D) perovskites are emerging as lead-free alternatives in halide perovskite materials, yet their exciton dynamics and transport remain less understood due to defect scattering. Addressing this, we employed temperature-dependent transient photoluminescence (PL) microscopy to investigate intrinsic exciton transport in three structurally analogous Sn- and Pb-based 2D perovskites. Employing conjugated ligands, we synthesized high-quality crystals with enhanced phase stability at various temperatures. Our results revealed phonon-limited exciton transport in Sn perovskites, with diffusion constants increasing from 0.2 cm2 s-1 at room temperature to 0.6 cm2 s-1 at 40 K, and a narrowing PL line width. Notably, Sn-based perovskites exhibited greater exciton mobility than their Pb-based equivalents, which is attributed to lighter effective masses. Thermally activated optical phonon scattering was observed in Sn-based compounds but was absent in Pb-based materials. These findings, supported by molecular dynamics simulations, demonstrate that the phonon scattering mechanism in Sn-based halide perovskites can be distinct from their Pb counterparts.

3.
J Am Chem Soc ; 146(23): 16314-16323, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38812460

RESUMO

Two-dimensional (2D) metal halide perovskites, such as BA2SnI4 (BA═CH3(CH2)3NH3), exhibit an enhanced charge carrier lifetime in experiments under strain. Experiments suggest that significant compression of the BA molecule, rather than of the inorganic lattice, contributes to this enhancement. To elucidate the underlying physical mechanism, we apply a moderate compressive strain to the entire system and subsequently introduce significant compression to the BA molecules. We then perform ab initio nonadiabatic molecular dynamics simulations of nonradiative electron-hole recombination. We observe that the overall lattice compression reduces atomic motions and decreases nonadiabatic coupling, thereby delaying electron-hole recombination. Additionally, compression of the BA molecules enhances hydrogen bonding between the BA molecules and iodine atoms, which lengthens the Sn-I bonds, distorts the [SnI6]4- octahedra, and suppresses atomic motions further, thus reducing nonadiabatic coupling. Also, the elongated Sn-I bonds and weakened antibonding interactions increase the band gap. Altogether, the compression delays the nonradiative electron-hole recombination by more than a factor of 3. Our simulations provide new and valuable physical insights into how compressive strain, accommodated primarily by the organic ligands, positively influences the optoelectronic properties of 2D layered halide perovskites, offering a promising pathway for further performance improvements.

4.
J Am Chem Soc ; 146(1): 1042-1052, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147589

RESUMO

Electrocatalytic coupling of CO and N2 to synthesize urea under ambient conditions is considered a promising strategy to replace traditional industrial technology. It is crucial to find efficient electrocatalysts that can adsorb and activate N2 and promote the C-N coupling reaction. Herein, a new two-dimensional porous carbon nitride material with multiactive sites is designed, in which boron and transition metal are embedded. Through a series of screening, B2Cr2, B2Mn2, and B2Os2 are predicted to be potential electrocatalysts for urea synthesis. Mechanistic studies are performed on bidentate metal-metal and metal-boron sites, and both NCON and CO mechanisms are explored. The electronic structure analysis shows that there is a strong N2 chemical adsorption within the bidentate site and that the N≡N bond is significantly activated. A new mechanism where free CO is inserted for C-N coupling within the two-dimensional porous structure is proposed.

5.
J Am Chem Soc ; 146(6): 4260-4269, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305175

RESUMO

Quantum tunneling, a phenomenon that allows particles to pass through potential barriers, can play a critical role in energy transfer processes. Here, we demonstrate that the proper design of organic-inorganic interfaces in two-dimensional (2D) hybrid perovskites allows for efficient triplet energy transfer (TET), where quantum tunneling of the excitons is the key driving force. By employing temperature-dependent and time-resolved photoluminescence and pump-probe spectroscopy techniques, we establish that triplet excitons can transfer from the inorganic lead-iodide sublattices to the pyrene ligands with rapid and weakly temperature-dependent characteristic times of approximately 50 ps. The energy transfer rates obtained based on the Marcus theory and first-principles calculations show good agreement with the experiments, indicating that the efficient tunneling of triplet excitons within the Marcus-inverted regime is facilitated by high-frequency molecular vibrations. These findings offer valuable insights into how one can effectively manipulate the energy landscape in 2D hybrid perovskites for energy transfer and the creation of diverse excitonic states.

6.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38506296

RESUMO

Using ab initio nonadiabatic molecular dynamics, we study the effect of large A-site cations on nonradiative electron-hole recombination in two-dimensional Ruddlesden-Popper perovskites HA2APb2I7, HA = n-hexylammonium, A = methylammonium (MA), or guanidinium (GA). The steric hindrance created by large GA cations distorts and stiffens the inorganic Pb-I lattice, reduces thermal structural fluctuations, and maintains the delocalization of electrons and holes at ambient and elevated temperatures. The delocalized charges interact more strongly in the GA system than in the MA system, and the charge recombination is accelerated. In contrast, replacement of only some MA cations with GA enhances disorder and increases charge lifetime, as seen in three-dimensional perovskites. This study highlights the key influence of structural fluctuations and disorder on the properties of charge carriers in metal halide perovskites, providing guidance for tuning materials' optoelectronic performance.

7.
Nano Lett ; 23(12): 5688-5695, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307217

RESUMO

Realizing ultrafast control of magnetization switching is of crucial importance for information processing and recording technology. Here, we explore the laser-induced spin electron excitation and relaxation dynamics processes of CrCl3/CrBr3 heterostructures with antiparallel (AP) and parallel (P) systems. Although an ultrafast demagnetization of CrCl3 and CrBr3 layers occurs in both AP and P systems, the overall magnetic order of the heterostructure remains unchanged due to the laser-induced equivalent interlayer spin electron excitation. More crucially, the interlayer magnetic order switches from antiferromagnetic (AFM) to ferrimagnetic (FiM) in the AP system once the laser pulse disappears. The microscopic mechanism underpinning this magnetization switching is dominated by the asymmetrical interlayer charge transfer combined with a spin-flip, which breaks the interlayer AFM symmetry and ultimately results in an inequivalent shift in the moment between two FM layers. Our study opens up a new idea for ultrafast laser control of magnetization switching in two-dimensional opto-spintronic devices.

8.
J Am Chem Soc ; 145(12): 7030-7039, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36921233

RESUMO

The development of efficient and stable catalysts for the electrocatalytic CO2 and CO reduction reactions (CORR) is under active investigation, but the problems of poor selectivity and low efficiency for C2 products still exist. We design a two-dimensional carbon nitride material (C5N2H2) that contains an eight N-atom structure capable of coordinating four-metal atom clusters and supporting simultaneously two carbon oxide molecules needed for the C2 coupling. The designed material has excellent electrical conductivity and stability. After high-throughput screening of catalytic performance of multiple four-metal clusters embedded into the framework, we systematically investigate the CORR process of 11 candidates. We find that Cu4-C5N2H2 has superior selectivity and low limiting potential for generating ethylene, while Cu2Zn2-C5N2H2 is selective and efficient to synthesize ethanol. Further, we discover a novel type of descriptor related to 2D material flexibility to evaluate the potential-determining step for generating ethylene. Our report both broadens the possibilities for few-atom CO reduction and demonstrates a novel substrate flexibility-related descriptor to predict the catalytic performance of materials.

9.
J Am Chem Soc ; 145(1): 476-486, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541604

RESUMO

Identifying photolysis and photothermolysis during a photochemical reaction has remained challenging because of the highly non-equilibrium and ultrafast nature of the processes. Using state-of-the-art ab initio adiabatic and nonadiabatic molecular dynamics, we investigate N2O photodissociation on the reduced rutile TiO2(110) surface and establish its detailed mechanism. The photodecomposition is initiated by electron injection, leading to the formation of a N2O- ion-radical, and activation of the N2O bending and symmetric stretching vibrations. Photothermolysis governs the N2O dissociation when N2O- is short-lived. The dissociation is activated by a combination of the anionic excited state evolution and local heating. A thermal fluctuation drives the molecular acceptor level below the TiO2 band edge, stabilizes the N2O- anion radical, and causes dissociation on a 1 ps timescale. As the N2O- resonance lifetime increases, photolysis becomes dominant since evolution in the anionic excited state activates the bending and symmetric stretching of N2O, inducing the dissociation. The photodecomposition occurs more easily when N2O is bonded to TiO2 through the O rather than N atom. We demonstrate further that a thermal dissociation of N2O can be realized by a rational choice of metal dopants, which enhance p-d orbital hybridization, facilitate electron transfer, and break N2O spontaneously. By investigating the charge dynamics and lifetime, we provide a fundamental atomistic understanding of the competition and synergy between the photocatalytic and photothermocatalytic dissociation of N2O and demonstrate how N2O reduction can be controlled by light irradiation, adsorption configuration, and dopants, enabling the design of high-performance transition-metal oxide catalysts.

10.
J Am Chem Soc ; 145(9): 5297-5309, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826471

RESUMO

Promising alternatives to three-dimensional perovskites, two-dimensional (2D) layered metal halide perovskites have proven their potential in optoelectronic applications due to improved photo- and chemical stability. Nevertheless, photovoltaic devices based on 2D perovskites suffer from poor efficiency owing to unfavorable charge carrier dynamics and energy losses. Focusing on the 2D Dion-Jacobson perovskite phase that is rapidly rising in popularity, we demonstrate that doping of complementary cations into the 3-(aminomethyl)piperidinium perovskite accelerates spontaneous charge separation and slows down charge recombination, both factors improving the photovoltaic performance. Employing ab initio nonadiabatic (NA) molecular dynamics combined with time-dependent density functional theory, we demonstrate that cesium doping broadens the bandgap by 0.4 eV and breaks structural symmetry. Assisted by thermal fluctuations, the symmetry breaking helps to localize electrons and holes in different layers and activates additional vibrational modes. As a result, the charge separation is accelerated. Simultaneously, the charge carrier lifetime grows due to shortened coherence time between the ground and excited states. The established relationships between perovskite composition and charge carrier dynamics provide guidelines toward future material discovery and design of perovskite solar cells.

11.
J Am Chem Soc ; 145(25): 14112-14123, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37334567

RESUMO

Hybrid organic-inorganic perovskites (HOIPs) contain light hydrogen atoms that exhibit significant nuclear quantum effects (NQEs). We demonstrate that NQEs have a strong effect on HOIP geometry and electron-vibrational dynamics at both low and ambient temperatures, even though charges in HOIPs reside on heavy elements. By combining ring-polymer molecular dynamics (MD) and ab initio MD with nonadiabatic MD and time-dependent density functional theory and focusing on the most studied tetragonal CH3NH3PbI3, we show that NQEs increase the disorder and thermal fluctuations through coupling of the light inorganic cations to the heavy inorganic lattice. The additional disorder induces charge localization and decreases electron-hole interactions. As a result, the nonradiative carrier lifetimes are extended by a factor of 3 at 160 K and 1/3 at 330 K. The radiative lifetimes are increased by 40% at both temperatures. The fundamental band gap decreases by 0.10 and 0.03 eV at 160 and 330 K, respectively. By enhancing atomic motions and introducing new vibrational modes, NQEs strengthen electron-vibrational interactions. Decoherence, determined by elastic scattering, accelerates almost by a factor of 2 due to NQEs. However, the nonadiabatic coupling, driving nonradiative electron-hole recombination, decreases because it is more sensitive to structural distortions than atomic motions in HOIPs. This study demonstrates, for the first time, that NQEs should be considered to achieve an accurate understanding of geometry evolution and charge carrier dynamics in HOIPs and provides important fundamental insights for the design of HOIPs and related materials for optoelectronic applications.

12.
J Am Chem Soc ; 145(41): 22826-22835, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796526

RESUMO

A twist angle at a van der Waals junction provides a handle to tune its optoelectronic properties for a variety of applications, and a comprehensive understanding of how the twist modulates electronic structure, interlayer coupling, and carrier dynamics is needed. We employ time-dependent density functional theory and nonadiabatic molecular dynamics to elucidate angle-dependent intervalley carrier transfer and recombination in bilayer WS2. Repulsion between S atoms in twisted configurations weakens interlayer coupling, increases the interlayer distance, and softens layer breathing modes. Twisting has a minor influence on K valleys while it lowers Γ valleys and raises Q valleys because their wave functions are delocalized between layers. Consequently, the reduced energy gaps between the K and Γ valleys accelerate the hole transfer in the twisted structures. Intervalley electron transfer proceeds nearly an order of magnitude faster than hole transfer. The more localized wave functions at K than Q values and larger bandgaps result in smaller nonadiabatic couplings for intervalley recombination, making it 3-4 times slower in twisted than high-symmetry structures. B2g breathing, E2g in-plane, and A1g out-of-plane modes are most active during intervalley carrier transfer and recombination. The faster intervalley transfer and extended carrier lifetimes in twisted junctions are favorable for optoelectronic device performance.

13.
J Am Chem Soc ; 145(9): 5393-5399, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36802574

RESUMO

As one of the most promising materials for next-generation solar cells, organometallic perovskites have attracted substantial fundamental and applied interest. Using first-principles quantum dynamics calculations, we show that octahedral tilting plays an important role in stabilizing perovskite structures and extending carrier lifetimes. Doping the material with (K, Rb, Cs) ions at the A-site enhances octahedral tilting and the stability of the system relative to unfavorable phases. The stability of doped perovskites is maximized for uniform distribution of the dopants. Conversely, aggregation of dopants in the system inhibits octahedral tilting and the associated stabilization. The simulations also indicate that with enhanced octahedral tilting, the fundamental band gap increases, the coherence time and nonadiabatic coupling decrease, and the carrier lifetimes are thus extended. Our theoretical work uncovers and quantifies the heteroatom-doping stabilization mechanisms, opening up new avenues to enhancing the optical performance of organometallic perovskites.

14.
J Am Chem Soc ; 145(51): 28166-28175, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38086059

RESUMO

The Cu single-atom catalyst (SAC) supported on TiO2 exhibits outstanding efficacy in photocatalytic hydrogen evolution. The precise operational mechanism remains a subject of ongoing debate. The focus resides with the interplay linking heightened catalytic activity, dynamic valence state alterations of Cu atoms, and their hybridization with H2O orbitals, manifested in catalyst color changes. Taking anatase TiO2 (101) as a prototypical surface, we perform ab initio quantum dynamics simulation to reveal that the high activity of the Cu-SAC is due to the quasi-planar coordination structure of the Cu atom after H2O adsorption, allowing it to trap photoexcited hot electrons and inject them into the hybridized orbital between Cu and H2O. The observed alterations in the valence state and the coloration can be attributed to the H atom released during H2O dissociation and adsorbed onto the lattice O atom neighboring the Cu-SAC. Notably, this adsorption of H atoms puts the Cu-SAC into an inert state, as opposed to an activating effect reported previously. Our work clarifies the relationship between the high photocatalytic activity and the local dynamic atomic coordination structure, providing atomistic insights into the structural changes occurring during photocatalytic reactions on SACs.

15.
Inorg Chem ; 62(16): 6197-6201, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37039460

RESUMO

A P162- polyphosphide dianion ink was produced by the reaction of red phosphorus with a binary thiol-amine mixture of ethanethiol (ET) and ethylenediamine (en). The polyphosphide was identified by solution 31P NMR spectroscopy and electrospray ionization mass spectrometry. This solute was compared to the reaction products of white phosphorus (P4) and other elemental pnictides in the same solvent system. The reaction of P4 with ET and en gives the same P162- polyphosphide; however, the easier handling and lower reactivity of red phosphorus highlights the novelty of that reaction. Elemental arsenic and antimony both give mononuclear pnictogen-sulfide-thiolate complexes upon reaction with ET and en under otherwise identical conditions, with this difference likely resulting from the greater covalency and tendency of phosphorus to form P-P bonds.

16.
Proc Natl Acad Sci U S A ; 117(22): 11940-11946, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32409603

RESUMO

The microscopic origin and timescale of the fluctuations of the energies of electronic states has a significant impact on the properties of interest of electronic materials, with implication in fields ranging from photovoltaic devices to quantum information processing. Spectroscopic investigations of coherent dynamics provide a direct measurement of electronic fluctuations. Modern multidimensional spectroscopy techniques allow the mapping of coherent processes along multiple time or frequency axes and thus allow unprecedented discrimination between different sources of electronic dephasing. Exploiting modern abilities in coherence mapping in both amplitude and phase, we unravel dissipative processes of electronic coherences in the model system of CdSe quantum dots (QDs). The method allows the assignment of the nature of the observed coherence as vibrational or electronic. The expected coherence maps are obtained for the coherent longitudinal optical (LO) phonon, which serves as an internal standard and confirms the sensitivity of the technique. Fast dephasing is observed between the first two exciton states, despite their shared electron state and common environment. This result is contrary to predictions of the standard effective mass model for these materials, in which the exciton levels are strongly correlated through a common size dependence. In contrast, the experiment is in agreement with ab initio molecular dynamics of a single QD. Electronic dephasing in these materials is thus dominated by the realistic electronic structure arising from fluctuations at the atomic level rather than static size distribution. The analysis of electronic dephasing thereby uniquely enables the study of electronic fluctuations in complex materials.

17.
Nano Lett ; 22(15): 6334-6341, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895620

RESUMO

Mechanistic understanding of the effect bulk defects have on carrier dynamics at the quantum level is crucial to suppress associated midgap mediated charge recombination in semiconductors yet many questions remain unexplored. Here, by employing ab initio quantum dynamics simulation and taking BiVO4 with oxygen vacancies (Ov) as a model system we demonstrate a spin protection mechanism for suppressed charge recombination. The carrier lifetime is significantly improved in the high spin defect system. The lifetime can be optimized by tuning the Ov concentration to minimize the nonradiative relaxation. Our work addresses literature ambiguities and contradictions about the role of bulk Ov in charge recombination and provides a route for defect engineering of semiconductors with enhanced carrier dynamics.

18.
J Am Chem Soc ; 144(39): 18126-18134, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36125494

RESUMO

Hot carriers (HCs) in lead halide perovskites are prone to rapidly relax at the band edge and waste plentiful photon energy, severely limiting their conversion efficiency as HC photovoltaic devices. Here, the HC cooling dynamics of MAPbI3 perovskite with common vacancy point defects (e.g., MAv+ and Iv-) and an interstitial point defect (e.g., Ii-) is elucidated, and the underlying physics is explicated using ab initio nonadiabatic molecular dynamics. Contrary to vacancy point defects, the interstitial point defect reduces the band degeneracy, decreases the HC -phonon interaction, weakens the nonadiabatic coupling, and ultimately slows down hot electron cooling by a factor of 1.5-2. Furthermore, the band-by-band relaxation pathway and direct relaxation pathway are uncovered for hot electron cooling and hot hole cooling, respectively, explaining why hot electrons can store more energy than hot holes during the cooling process. Besides, oxygen molecules interacting with Ii- sharply accelerate the hot electron cooling, making it even faster than that of the pristine system and revealing the detrimental effect of oxygen on HC cooling. This work provides significant insights into the defect-dependent HC cooling dynamics and suggests a new strategy to design high-efficiency HC photovoltaic devices.

19.
J Am Chem Soc ; 144(12): 5543-5551, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35294834

RESUMO

Exposure to oxygen undermines stability and charge transport in metal halide perovskites, because molecular oxygen, as well as photogenerated superoxide and peroxide, erodes the perovskite lattice and creates charge traps. We demonstrate that alkaline earth metals passivate the oxygen species in CH3NH3PbI3 by breaking the O-O bond and forming new bonds with the oxygen atoms, shifting the trap states of the antibonding O-O orbitals from inside the bandgap into the bands. In addition to eliminating the oxidizing species and the charge traps, doping with the alkaline earth metals slightly increases the bandgap and partially localizes the electron and hole wavefunctions, weakening the electron-hole and charge-phonon interactions and making the charge carrier lifetimes longer than even those in pristine CH3NH3PbI3. Relative to CH3NH3PbI3 exposed to oxygen and light, the charge carrier lifetime of the passivated CH3NH3PbI3 increases by 2-3 orders of magnitude. The ab initio quantum dynamics simulations demonstrate that alkaline earth metals passivate efficiently not only intrinsic perovskite defects, but also the foreign species, providing a viable strategy to suppress perovskite degradation.

20.
J Am Chem Soc ; 144(14): 6604-6612, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362968

RESUMO

Ion migration, hole trapping, and electron-hole recombination are common processes in metal halide perovskites. We demonstrate using ab initio non-adiabatic molecular dynamics and time-domain density functional theory that they are intricately related and strongly influence each other. The hole injection accelerates ion migration by decreasing the diffusion barrier and shortening the migration length. The injected hole also promotes the nonradiative charge recombination by strengthening electron-phonon interactions in the low-frequency region and prolonging the quantum coherence time. The synergy stems from the soft perovskite lattice and response of the valence band maximum to the Pb-I lattice distortion induced by the hole. This work provides important insights into the influence of ion mobility and hole injection on the performance of perovskite solar cells and suggests that high concentration of holes should be avoided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA