Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(7): 1260-1272, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39218023

RESUMO

COVID-19 has caused millions of deaths and many times more infections worldwide, emphasizing the unpreparedness of the global health system in the face of new infections and the key role for vaccines and therapeutics, including virus-neutralizing antibodies, in prevention and containment of the disease. Continuous evolution of the SARS-CoV-2 coronavirus has been causing its new variants to evade the action of the immune system, which highlighted the importance of detailed knowledge of the epitopes of already selected potent virus-neutralizing antibodies. A single-chain antibody ("nanobody") targeting the SARS-CoV-2 receptor-binding domain (RBD), clone P2C5, had exhibited robust virus-neutralizing activity against all SARS-CoV-2 variants and, being a major component of the anti-COVID-19 formulation "GamCoviMab", had successfully passed Phase I of clinical trials. However, after the emergence of the Delta and XBB variants, a decrease in the neutralizing activity of this nanobody was observed. Here we report on the successful crystal structure determination of the RBD:P2C5 complex at 3.1 Å, which revealed the intricate protein-protein interface, sterically occluding full ACE2 receptor binding by the P2C5-neutralized RBD. Moreover, the structure revealed the developed RBD:P2C5 interface centered around residues Leu452 and Phe490, thereby explaining the evasion of the Delta or Omicron XBB, but not Omicron B.1.1.529 variant, as a result of the single L452R or F490S mutations, respectively, from the action of P2C5. The structure obtained is expected to foster nanobody engineering in order to rescue neutralization activity and will facilitate epitope mapping for other neutralizing nanobodies by competition assays.


Assuntos
Anticorpos Neutralizantes , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Domínios Proteicos , Ligação Proteica , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Evasão da Resposta Imune , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Sítios de Ligação
2.
Biochemistry (Mosc) ; 86(10): 1275-1287, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903153

RESUMO

A new platform for creating anti-coronavirus epitope vaccines has been developed. Two loop-like epitopes with lengths of 22 and 42 amino acid residues were selected from the receptor-binding motif of the Spike protein from the SARS-CoV-2 virus that participate in a large number of protein-protein interactions in the complexes with ACE2 and neutralizing antibodies. Two types of hybrid proteins, including one of the two selected epitopes, were constructed. To fix conformation of the selected epitopes, an approach using protein scaffolds was used. The homologue of Rop protein from the Escherichia coli ColE1 plasmid containing helix-turn-helix motif was used as an epitope scaffold for the convergence of C- and N-termini of the loop-like epitopes. Loop epitopes were inserted into the turn region. The conformation was additionally fixed by a disulfide bond formed between the cysteine residues present within the epitopes. For the purpose of multimerization, either aldolase from Thermotoga maritima, which forms a trimer in solution, or alpha-helical trimerizer of the Spike protein from SARS-CoV-2, was attached to the epitopes incorporated into the Rop-like protein. To enable purification on the heparin-containing sorbents, a short fragment from the heparin-binding hemagglutinin of Mycobacterium tuberculosis was inserted at the C-terminus of the hybrid proteins. All the obtained proteins demonstrated high level of immunogenicity after triplicate parenteral administration to mice. Sera from the mice immunized with both aldolase-based hybrid proteins and the Spike protein SARS-CoV-2 trimerizer-based protein with a longer epitope interacted with both the inactivated SARS-CoV-2 virus and the Spike protein receptor-binding domain at high titers.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/isolamento & purificação , Vacinas contra COVID-19/farmacologia , Epitopos/genética , Epitopos/imunologia , Epitopos/isolamento & purificação , Epitopos/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/farmacologia
3.
Front Immunol ; 14: 1129245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063833

RESUMO

Introduction: Numerous agents for prophylaxis of SARS-CoV-2-induced diseases are currently registered for the clinical use. Formation of the immunity happens within several weeks following vaccine administration which is their key disadvantage. In contrast, drugs based on monoclonal antibodies, enable rapid passive immunization and therefore can be used for emergency pre- and post-exposure prophylaxis of COVID-19. However rapid elimination of antibody-based drugs from the circulation limits their usage for prolonged pre-exposure prophylaxis. Methods: In current work we developed a recombinant adeno-associated viral vector (rAAV), expressing a SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibody P2C5 fused with a human IgG1 Fc fragment (P2C5-Fc) using methods of molecular biotechnology and bioprocessing. Results and discussions: A P2C5-Fc antibody expressed by a proposed rAAV (rAAV-P2C5-Fc) was shown to circulate within more than 300 days in blood of transduced mice and protect animals from lethal SARS-CoV-2 virus (B.1.1.1 and Omicron BA.5 variants) lethal dose of 105 TCID50. In addition, rAAV-P2C5-Fc demonstrated 100% protective activity as emergency prevention and long-term prophylaxis, respectively. It was also demonstrated that high titers of neutralizing antibodies to the SARS-CoV-2 virus were detected in the blood serum of animals that received rAAV-P2C5-Fc for more than 10 months from the moment of administration.Our data therefore indicate applicability of an rAAV for passive immunization and induction of a rapid long-term protection against various SARS-CoV-2 variants.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Biotecnologia , Anticorpos Monoclonais , Anticorpos Antivirais , Fragmentos Fc das Imunoglobulinas
4.
Parasitol Res ; 108(5): 1219-27, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21113724

RESUMO

The neuro-muscular system (NMS) of cercariae with different swimming patterns was studied with immunocytochemical methods and confocal scanning laser microscopy. Specimens of the continuously swimming Cercaria parvicaudata, Maritrema subdolum and Himasthla elongata were compared with specimens of the intermittently swimming Cryptocotyle lingua and the attached Podocotyle atomon. The patterns of F-actin in the musculature, 5-HT immunoreactive (-IR), FMRFamide-IR neuronal elements, α-tubulin-IR elements in the nervous and sensory systems and DAPI-stained nuclei were investigated. The general plan of the NMS was similar in all cercariae studied. No major structural differences in the patterns of muscle fibres were observed. However, in the tail of C. lingua, transverse muscle fibres connecting the bands of longitudinal muscles were found. No major structural differences in the 5-HT- or FMRFamide-IR nervous systems were observed. The number of 5-HT-IR neurones in the cercarial bodies varied between 12 and 14. The number and distribution of the α-tubulin-IR processes on the cercarial bodies and tails differed from each other. The relation between the number and structure of the α-tubulin-IR processes and the host finding strategy of the cercariae is discussed. A detailed schematic picture of the NMS in the tails of C. lingua and M. subdolum is presented.


Assuntos
Cercárias/fisiologia , Trematódeos/fisiologia , Actinas/análise , Animais , Cercárias/anatomia & histologia , Cercárias/crescimento & desenvolvimento , FMRFamida/análise , Imuno-Histoquímica , Locomoção , Microscopia Confocal , Músculos/anatomia & histologia , Músculos/química , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/química , Neurônios/química , Serotonina/análise , Trematódeos/anatomia & histologia , Trematódeos/crescimento & desenvolvimento , Tubulina (Proteína)/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA