Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Biol Chem ; 288(52): 37138-53, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24196959

RESUMO

Hypoxia, a ubiquitous feature of tumors, can be exploited by hypoxia-activated prodrugs (HAP) that are substrates for one-electron reduction in the absence of oxygen. NADPH:cytochrome P450 oxidoreductase (POR) is considered one of the major enzymes responsible, based on studies using purified enzyme or forced overexpression in cell lines. To examine the role of POR in HAP activation at endogenous levels of expression, POR knock-outs were generated in HCT116 and SiHa cells by targeted mutation of exon 8 using zinc finger nucleases. Absolute quantitation by proteotypic peptide mass spectrometry of DNA sequence-confirmed multiallelic mutants demonstrated expression of proteins with residual one-electron reductase activity in some clones and identified two (Hko2 from HCT116 and S2ko1 from SiHa) that were functionally null by multiple criteria. Sensitivities of the clones to 11 HAP (six nitroaromatics, three benzotriazine N-oxides, and two quinones) were compared with wild-type and POR-overexpressing cells. All except the quinones were potentiated by POR overexpression. Knocking out POR had a marked effect on antiproliferative activity of the 5-nitroquinoline SN24349 in both genetic backgrounds after anoxic exposure but little or no effect on activity of most other HAP, including the clinical stage 2-nitroimidazole mustard TH-302, dinitrobenzamide mustard PR-104A, and benzotriazine N-oxide SN30000. Clonogenic cell killing and reductive metabolism of PR-104A and SN30000 under anoxia also showed little change in the POR knock-outs. Thus, although POR expression is a potential biomarker of sensitivity to some HAP, identification of other one-electron reductases responsible for HAP activation is needed for their rational clinical development.


Assuntos
Antineoplásicos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NADPH-Ferri-Hemoproteína Redutase/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Antineoplásicos/farmacocinética , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , NADPH-Ferri-Hemoproteína Redutase/genética , Proteínas de Neoplasias/genética , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Pró-Fármacos/farmacocinética
2.
Chembiochem ; 15(13): 1998-2006, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25087870

RESUMO

Duocarmycins are highly cytotoxic natural products that have potential for development into anticancer agents. Herein we describe proposed but previously unidentified NH analogues of the DNA-alkylating subunit and characterise these by solvolysis studies, NMR and computational modelling. These compounds are shown to be the exclusive intermediates in the solvolysis of their seco precursors and to possess very similar structural features to the widely studied O-based analogues, apart from an unusually high basicity. The measured pKa of 10.5 implies that the NH compounds are fully protonated under physiological conditions. Remarkably, their extremely high reactivity (calculated hydrolysis rate 10(8) times higher for protonated NH compared to the neutral O analogue) is still compatible with potent cytotoxicity, provided the active species is formed in the presence of cells. These surprising findings are of relevance to the design of duocarmycin-based tumour-selective therapies.


Assuntos
Antibióticos Antineoplásicos/química , Ciclopropanos/química , Ciclopropanos/toxicidade , Indóis/química , Indóis/farmacologia , Indóis/toxicidade , Animais , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/toxicidade , Cricetinae , Cricetulus , Ciclopropanos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Duocarmicinas , Humanos , Concentração de Íons de Hidrogênio , Indóis/síntese química , Cinética , Camundongos , Prótons , Pirróis/farmacologia
3.
Bioorg Med Chem ; 22(7): 2123-32, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24650701

RESUMO

A novel class of nitroimidazole alkylsulfonamides have been prepared and evaluated as hypoxia-selective cytotoxins and radiosensitisers. The sulfonamide side chain markedly influences the physicochemical properties of the analogues: lowering aqueous solubility and raising the electron affinity of the nitroimidazole group. The addition of hydroxyl or basic amine groups increased aqueous solubility, with charged amine groups contributing to increased electron affinity. The analogues covered the range of electron affinity for effective radiosensitisation with one-electron reduction potentials ranging from -503 to -342mV. Cytotoxicity under normoxia or anoxia against a panel of human tumour cell lines was determined using a proliferation assay. 2-Nitroimidazole sulfonamides displayed significant hypoxia-selective cytotoxicity (6 to 64-fold), while 4- and 5-nitroimidazole analogues did not display hypoxia-selective cytotoxicity. All analogues sensitised anoxic HCT-116 human colorectal cells to radiation at non-toxic concentrations. 2-Nitroimidazole analogues provided modest sensitisation due to the relatively low concentrations used while several 5-nitroimidazole analogues provided equivalent sensitisation to misonidazole and etanidazole at similar molar concentrations.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Nitroimidazóis/farmacologia , Radiossensibilizantes/farmacologia , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HT29 , Humanos , Estrutura Molecular , Nitroimidazóis/síntese química , Nitroimidazóis/química , Radiossensibilizantes/síntese química , Radiossensibilizantes/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
4.
Mol Oncol ; 18(8): 1885-1903, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38426642

RESUMO

Tumour hypoxia promotes poor patient outcomes, with particularly strong evidence for head and neck squamous cell carcinoma (HNSCC). To effectively target hypoxia, therapies require selection biomarkers and preclinical models that can accurately model tumour hypoxia. We established 20 patient-derived xenograft (PDX) and cell line-derived xenograft (CDX) models of HNSCC that we characterised for their fidelity to represent clinical HNSCC in gene expression, hypoxia status and proliferation and that were evaluated for their sensitivity to hypoxia-activated prodrugs (HAPs). PDX models showed greater fidelity in gene expression to clinical HNSCC than cell lines, as did CDX models relative to their paired cell lines. PDX models were significantly more hypoxic than CDX models, as assessed by hypoxia gene signatures and pimonidazole immunohistochemistry, and showed similar hypoxia gene expression to clinical HNSCC tumours. Hypoxia or proliferation status alone could not determine HAP sensitivity across our 20 HNSCC and two non-HNSCC tumour models by either tumour growth inhibition or killing of hypoxia cells in an ex vivo clonogenic assay. In summary, our tumour models provide clinically relevant HNSCC models that are suitable for evaluating hypoxia-targeting therapies; however, additional biomarkers to hypoxia are required to accurately predict drug sensitivity.


Assuntos
Biomarcadores Tumorais , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Biomarcadores Tumorais/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relevância Clínica , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Nitroimidazóis/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Hipóxia Tumoral
5.
Bioorg Med Chem ; 19(20): 5989-98, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21920763

RESUMO

Nitro seco analogs (nitroCBIs) of the antitumor antibiotic duocarmycins are a new class of hypoxia activated prodrugs. These compounds undergo hypoxia-selective metabolism to form potent DNA alkylating agents. A series of four nitroCBI alcohol prodrugs containing a bromide rather than chloride or sulfonate leaving group was synthesized. In assays for in vitro hypoxia-selective cytotoxicity against human tumor cell lines the two bromides with DNA minor groove binding basic side chains displayed hypoxic cytotoxicity ratios (HCRs) of 52-286 in HT29 cells and 41-43 in SiHa cells. These values compare well with a related previously reported chloride analog. The corresponding more water soluble phosphate pre-prodrugs of the bromides were synthesized and evaluated for in vivo antitumor activity against SiHa human tumor xenografts. All four phosphates, with both neutral and basic side chains, demonstrated activity providing statistically significant hypoxic log(10) cell kills of 0.87-2.80 at non-toxic doses, matching or proving superior to those of their chloride analogs.


Assuntos
Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacologia , Brometos/química , Brometos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Hipóxia Celular/fisiologia , Feminino , Humanos , Indóis/química , Indóis/farmacologia , Masculino , Camundongos , Camundongos Nus , Fosfatos/química , Fosfatos/farmacologia , Pirróis/química , Pirróis/farmacologia , Relação Estrutura-Atividade , Neoplasias do Colo do Útero/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Bioorg Med Chem ; 19(16): 4851-60, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21767954

RESUMO

A series of 3-substituted (5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl sulfonate (nitroCBI) prodrugs containing sulfonate leaving groups undergo hypoxia-selective metabolism to form potent DNA minor groove alkylating agents. They were evaluated (along with chloride leaving group analogs for comparison) for their cytotoxicity against cultures of SKOV3 and HT29 human tumor cell lines under both aerobic and hypoxic conditions. Sulfonates with neutral side chains (e.g., 5,6,7-trimethoxyindole; TMI) show consistently higher hypoxic cytotoxicity ratios (HCRs) (34-246) than the corresponding chloro analogs (2.8-3.1) in SKOV3 cells, but these trends do not hold for compounds with cationic or polar neutral side chains.


Assuntos
Antineoplásicos Alquilantes/síntese química , Indóis/química , Nitrocompostos/síntese química , Pró-Fármacos/síntese química , Alcanossulfonatos/síntese química , Alcanossulfonatos/química , Alcanossulfonatos/farmacologia , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacologia , Hipóxia Celular/efeitos dos fármacos , DNA/química , DNA/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Duocarmicinas , Feminino , Humanos , Indóis/farmacologia , Nitrocompostos/química , Nitrocompostos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Cancer Chemother Pharmacol ; 88(4): 673-687, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245333

RESUMO

PURPOSE: Hypoxia-activated prodrugs (HAPs) have the potential for eliminating chemo- and radiation-resistant hypoxic tumour cells, but their activity is often compromised by limited penetration into hypoxic zones. Nitrochloromethylbenzindoline (nitroCBI) HAPs are reduced in hypoxic cells to highly cytotoxic DNA minor groove alkylating aminoCBI metabolites. In this study, we investigate whether a lead nitroCBI, SN30548, generates a significant bystander effect through the diffusion of its aminoCBI metabolite and whether this compensates for any diffusion limitations of the prodrug in tumour tissue. METHODS: Metabolism and uptake of the nitroCBI in oxic and anoxic cells, and diffusion through multicellular layer cultures, was characterised by LC-MS/MS. To quantify bystander effects, clonogenic cell killing of HCT116 cells was assessed in multicellular spheroid co-cultures comprising cells transfected with cytochrome P450 oxidoreductase (POR) or E. coli nitroreductase NfsA. Spatially-resolved pharmacokinetic/pharmacodynamic (PK/PD) models, parameterised by the above measurements, were developed for spheroids and tumours using agent-based and Green's function modelling, respectively. RESULTS: NitroCBI was reduced to aminoCBI by POR under anoxia and by NfsA under oxia, and was the only significant cytotoxic metabolite in both cases. In spheroid co-cultures comprising 30% NfsA-expressing cells, non-metabolising cells were as sensitive as the NfsA cells, demonstrating a marked bystander effect. Agent-based PK/PD models provided good prediction of cytotoxicity in spheroids, while use of the same parameters in a Green's function model for a tumour microregion demonstrated that local diffusion of aminoCBI overcomes the penetration limitation of the prodrug. CONCLUSIONS: The nitroCBI HAP SN30548 generates a highly efficient bystander effect through local diffusion of its active metabolite in tumour tissue.


Assuntos
Efeito Espectador/efeitos dos fármacos , Hipóxia Celular , Indóis/farmacologia , Modelos Biológicos , Cromatografia Líquida , Técnicas de Cocultura , Proteínas de Escherichia coli/genética , Células HCT116 , Humanos , Indóis/farmacocinética , NADPH-Ferri-Hemoproteína Redutase/genética , Nitrorredutases/genética , Pró-Fármacos , Esferoides Celulares/citologia , Espectrometria de Massas em Tandem
8.
Front Pharmacol ; 12: 701456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163368

RESUMO

Bacterial nitroreductase enzymes that can efficiently convert nitroaromatic prodrugs to a cytotoxic form have numerous applications in targeted cellular ablation. For example, the generation of cytotoxic metabolites that have low bystander potential (i.e., are largely confined to the activating cell) has been exploited for precise ablation of specific cell types in animal and cell-culture models; while enzyme-prodrug combinations that generate high levels of bystander cell killing are useful for anti-cancer strategies such as gene-directed enzyme-prodrug therapy (GDEPT). Despite receiving substantial attention for such applications, the canonical nitroreductase NfsB from Escherichia coli has flaws that limit its utility, in particular a low efficiency of conversion of most prodrugs. Here, we sought to engineer a superior broad-range nitroreductase, E. coli NfsA, for improved activity with three therapeutically-relevant prodrugs: the duocarmycin analogue nitro-CBI-DEI, the dinitrobenzamide aziridine CB1954 and the 5-nitroimidazole metronidazole. The former two prodrugs have applications in GDEPT, while the latter has been employed for targeted ablation experiments and as a precise 'off-switch' in GDEPT models to eliminate nitroreductase-expressing cells. Our lead engineered NfsA (variant 11_78, with the residue substitutions S41Y, L103M, K222E and R225A) generated reduced metabolites of CB1954 and nitro-CBI-DEI that exhibited high bystander efficiencies in both bacterial and 2D HEK-293 cell culture models, while no cell-to-cell transfer was evident for the reduced metronidazole metabolite. We showed that the high bystander efficiency for CB1954 could be attributed to near-exclusive generation of the 2-hydroxylamine reduction product, which has been shown in 3D cell culture to cause significantly greater bystander killing than the 4-hydroxylamine species that is also produced by NfsB. We similarly observed a high bystander effect for nitro-CBI-DEI in HCT-116 tumor spheroids in which only a small proportion of cells were expressing variant 11_78. Collectively, our data identify variant 11_78 as a broadly improved prodrug-activating nitroreductase that offers advantages for both targeted cellular ablation and suicide gene therapy applications.

9.
Bioorg Med Chem ; 18(14): 4997-5006, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20580559

RESUMO

Nitro seco-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-ones (nitroCBIs) are a new class of prodrugs for antitumor therapy that undergo hypoxia-selective metabolism to form potent DNA minor groove alkylating agents. Although hindered by poor aqueous solubility, several examples have shown activity against hypoxic tumor cells in vivo. Here we investigate structural properties that influence hypoxic selectivity in vitro, and show that for high hypoxic selectivity nitroCBIs should combine an electron-withdrawing group of H-bond donor capacity on the A-ring, with a basic substituent on the minor groove-binding side chain. Substitution on the A-ring is compatible with the introduction of functionality that can improve water solubility.


Assuntos
Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/metabolismo , Hipóxia Celular , Ciclopropanos/química , Ciclopropanos/metabolismo , Indóis/química , Indóis/metabolismo , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Animais , Antineoplásicos Alquilantes/farmacocinética , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclopropanos/farmacocinética , Ciclopropanos/farmacologia , DNA/metabolismo , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Camundongos , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Solubilidade
11.
Front Pharmacol ; 9: 1013, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279659

RESUMO

Intra-tumor heterogeneity represents a major barrier to anti-cancer therapies. One strategy to minimize this limitation relies on bystander effects via diffusion of cytotoxins from targeted cells. Hypoxia-activated prodrugs (HAPs) have the potential to exploit hypoxia in this way, but robust methods for measuring bystander effects are lacking. The objective of this study is to develop experimental models (monolayer, multilayer, and multicellular spheroid co-cultures) comprising 'activator' cells with high expression of prodrug-activating reductases and reductase-deficient 'target' cells, and to couple these with agent-based models (ABMs) that describe diffusion and reaction of prodrugs and their active metabolites, and killing probability for each cell. HCT116 cells were engineered as activators by overexpressing P450 oxidoreductase (POR) and as targets by knockout of POR, with fluorescent protein and antibiotic resistance markers to enable their quantitation in co-cultures. We investigated two HAPs with very different pharmacology: SN30000 is metabolized to DNA-breaking free radicals under hypoxia, while the dinitrobenzamide PR104A generates DNA-crosslinking nitrogen mustard metabolites. In anoxic spheroid co-cultures, increasing the proportion of activator cells decreased killing of both activators and targets by SN30000. An ABM parameterized by measuring SN30000 cytotoxicity in monolayers and diffusion-reaction in multilayers accurately predicted SN30000 activity in spheroids, demonstrating the lack of bystander effects and that rapid metabolic consumption of SN30000 inhibited prodrug penetration. In contrast, killing of targets by PR104A in anoxic spheroids was markedly increased by activators, demonstrating that a bystander effect more than compensates any penetration limitation. However, the ABM based on the well-studied hydroxylamine and amine metabolites of PR104A did not fit the cell survival data, indicating a need to reassess its cellular pharmacology. Characterization of extracellular metabolites of PR104A in anoxic cultures identified more stable, lipophilic, activated dichloro mustards with greater tissue diffusion distances. Including these metabolites explicitly in the ABM provided a good description of activator and target cell killing by PR104A in spheroids. This study represents the most direct demonstration of a hypoxic bystander effect for PR104A to date, and demonstrates the power of combining mathematical modeling of pharmacokinetics/pharmacodynamics with multicellular culture models to dissect bystander effects of targeted drug carriers.

12.
Biochem Pharmacol ; 156: 265-280, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30134191

RESUMO

Evofosfamide (TH-302) is a clinical-stage hypoxia-activated prodrug with proven efficacy against hypoxic cells in preclinical tumour models. TH-302 is designed to release the DNA crosslinking agent bromo-isophosphoramide mustard (Br-IPM) when reduced in hypoxic tissue. Br-IPM is considered to diffuse locally from hypoxic regions, eliciting additional tumour cell killing, but the latter 'bystander effect' has not been demonstrated directly. Previous studies with multicellular co-cultures that included cells expressing the E. coli nitroreductase NfsA as a model TH-302 reductase have provided clear evidence of a bystander effect (which we confirm in the present study). However, NfsA is an oxygen-insensitive two-electron reductase that is not expected to generate the nitro radical intermediate that has been demonstrated to fragment to release Br-IPM. Here, we use mass spectrometry methods to characterise TH-302 metabolites generated by one-electron reduction (steady-state radiolysis by ionising radiation and cellular metabolism under hypoxia, including HCT116 cells that overexpress P450 oxidoreductase, POR) or by NfsA expressed in HCT116 cells under oxic conditions, and investigate the stability and cytotoxicity of these products. Br-IPM is shown to have very low cytotoxic potency when added to extracellular culture medium and to be rapidly converted to other hydrophilic products including dichloro-isophosphoramide mustard (IPM). Only traces of Br-IPM or IPM were detected in the extracellular medium when generated by cellular metabolism of TH-302. We identify, in NfsA-expressing cells, the hydroxylamine metabolite of TH-302, and downstream products resulting from rearrangement or hydration of the imidazole ring, and demonstrate that formation of these candidate bystander effect mediators is suppressed by hypoxia. This characterisation of the cellular pharmacology of TH-302 implies that bystander effects from hypoxic activation of TH-302 are unlikely to contribute to its anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Efeito Espectador , Nitroimidazóis/farmacologia , Mostardas de Fosforamida/farmacologia , Proteínas de Escherichia coli , Células HCT116 , Humanos , Estrutura Molecular , NADPH-Ferri-Hemoproteína Redutase , Nitroimidazóis/química , Nitrorredutases , Mostardas de Fosforamida/química , Pró-Fármacos/farmacologia
13.
J Med Chem ; 61(3): 1241-1254, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29253343

RESUMO

Innovations in the field of radiotherapy such as stereotactic body radiotherapy, along with the advent of radio-immuno-oncology, herald new opportunities for classical oxygen-mimetic radiosensitizers. The role of hypoxic tumor cells in resistance to radiotherapy and in suppression of immune response continues to endorse tumor hypoxia as a bona fide, yet largely untapped, drug target. Only nimorazole is used clinically as a radiosensitizer, and there is a dearth of new radiosensitizers in development. Here we present a survey of novel nitroimidazole alkylsulfonamides and document their cytotoxicity and ability to radiosensitize anoxic tumor cells in vitro. We use a phosphate prodrug approach to increase aqueous solubility and to improve tumor drug delivery. A 2-nitroimidazole and a 5-nitroimidazole analogue demonstrated marked tumor radiosensitization in either ex vivo assays of surviving clonogens or tumor regrowth delay.


Assuntos
Nitroimidazóis/química , Nitroimidazóis/farmacologia , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Descoberta de Drogas , Feminino , Células HCT116 , Humanos , Camundongos , Nitroimidazóis/farmacocinética , Nitroimidazóis/toxicidade , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/toxicidade , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Radiat Oncol Biol Phys ; 69(2): 560-71, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17869669

RESUMO

PURPOSE: To compare oxygen dependence and tissue transport properties of a new hypoxia-activated prodrug, PR-104A, with tirapazamine, and to evaluate the implications for antitumor activity when combined with radiotherapy. METHODS AND MATERIALS: Oxygen dependence of cytotoxicity was measured by clonogenic assay in SiHa cell suspensions. Tissue transport parameters were determined using SiHa multicellular layers. Spatially resolved pharmacokinetic (PK) and pharmacodynamic (PD) models were developed to predict cell killing in SiHa tumors and tested by clonogenic assay 18 h after treatment with the corresponding phosphate ester, PR-104. RESULTS: The K-value (oxygen concentration to halve cytotoxic potency) of PR-104A was 0.126 +/- 0.021 microM (10-fold lower than tirapazamine at 1.30 +/- 0.28 microM). The diffusion coefficient of PR-104A in multicellular layers (4.42 +/- 0.15 x 10(-7) cm2 s(-1)) was lower than that of tirapazamine (1.30 +/- 0.05 x 10(-6) cm2 s(-1)) but PK modeling predicted better penetration to hypoxic cells in tumors because of its slower metabolism. The tirapazamine PK/PD model successfully predicted the measured activity in combination with single-dose radiation against SiHa tumors, and the PR-104A model underpredicted the activity, which was greater for PR-104 than for tirapazamine (at equivalent host toxicity) both with radiation and as a single agent. CONCLUSION: PR-104/PR-104A has different PK/PD properties from tirapazamine and superior activity with single-dose radiotherapy against SiHa xenografts. We have inferred that PR-104A is better able to kill cells at intermediate partial pressure of oxygen in tumors than implied by the PK/PD model, most likely because of a bystander effect resulting from diffusion of its activated metabolites from severely hypoxic zones.


Assuntos
Antineoplásicos/farmacocinética , Hipóxia Celular/fisiologia , Compostos de Mostarda Nitrogenada/farmacocinética , Oxigênio/fisiologia , Pró-Fármacos/farmacocinética , Triazinas/farmacocinética , Animais , Transporte Biológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Camundongos Nus , Modelos Biológicos , Pressão Parcial , Radiossensibilizantes/farmacocinética , Tirapazamina , Células Tumorais Cultivadas
15.
J Med Chem ; 50(26): 6654-64, 2007 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-18052317

RESUMO

Tirapazamine (TPZ) and related 1,2,4-benzotriazine 1,4 dioxides (BTOs) are selectively toxic under hypoxia, but their ability to kill hypoxic cells in tumors is generally limited by their poor extravascular transport. Here we show that removing hydrogen bond donors by replacing the 3-NH2 group of TPZ with simple alkyl groups increased their tissue diffusion coefficients as measured in multicellular layer cultures. This advantage was largely retained using solubilizing 3-alkylaminoalkyl substituents provided these were sufficiently lipophilic at pH 7.4. The high reduction potentials of such compounds resulted in rates of metabolism too high for optimal penetration into hypoxic tissue, but electron-donating 6- and 7-substituents moderated metabolism. Pharmacokinetic/pharmacodynamic model-guided screening was used to select BTOs with optimal extravascular transport and hypoxic cytotoxicity properties for evaluation against HT29 human tumor xenografts in combination with radiation. This identified four novel 3-alkyl BTOs providing greater clonogenic killing of hypoxic cells than TPZ at equivalent host toxicity, with the 6-morpholinopropyloxy-BTO 22 being 3-fold more active.


Assuntos
Antineoplásicos/síntese química , Óxidos N-Cíclicos/síntese química , Triazinas/síntese química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Transporte Biológico , Hipóxia Celular , Linhagem Celular Tumoral , Terapia Combinada , Óxidos N-Cíclicos/farmacocinética , Óxidos N-Cíclicos/farmacologia , Difusão , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligação de Hidrogênio , Camundongos , Modelos Biológicos , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/radioterapia , Relação Estrutura-Atividade , Transplante Heterólogo , Triazinas/farmacocinética , Triazinas/farmacologia , Ensaio Tumoral de Célula-Tronco
16.
J Med Chem ; 50(25): 6392-404, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18001018

RESUMO

Pharmacokinetic/pharmacodynamic (PK/PD) modeling has shown the antitumor activity of tirapazamine (TPZ), a bioreductive hypoxia-selective cytotoxin, to be limited by poor penetration through hypoxic tumor tissue. We have prepared a series of 1,2,4-benzotriazine 1,4-dioxide (BTO) analogues of TPZ to improve activity against hypoxic cells by increasing extravascular transport. The 6 substituents modified lipophilicity and rates of hypoxic metabolism. 3-Alkylamino substituents increased aqueous solubility and also influenced lipophilicity and hypoxic metabolism. PK/PD model-guided screening was used to select six BTOs for evaluation against hypoxic cells in HT29 human tumor xenografts. All six BTOs were active in vivo, and two provided greater hypoxic cell killing than TPZ because of improved transport and/or plasma PK. This PK/PD model considers two causes of therapeutic failure (limited tumor penetration and poor plasma pharmacokinetics) often not addressed early in drug development and provides a general strategy for selecting candidates for in vivo evaluation during lead optimization.


Assuntos
Modelos Biológicos , Neoplasias/metabolismo , Triazinas/farmacologia , Triazinas/farmacocinética , Algoritmos , Animais , Transporte Biológico , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias/irrigação sanguínea , Transplante Heterólogo , Triazinas/química
17.
J Med Chem ; 50(6): 1197-212, 2007 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17326614

RESUMO

A series of 2,4-dinitrobenzamide mustards were prepared from 5-chloro-2,4-dinitrobenzoic acid or the corresponding 5-dimesylate mustard as potential prodrugs for gene-directed enzyme prodrug therapy (GDEPT) with the E. coli nfsB nitroreductase (NTR). The compounds, including 32 new examples, were evaluated in four pairs of NTR+ve/-ve cell lines for selective cytotoxicity (IC50 and IC50 ratios), in multicellular layer (MCL) cultures for bystander effects, and for in vivo activity against tumors grown from stably NTR transfected EMT6 and WiDr cells in nude mice. Multivariate regression analysis of the IC50 results was undertaken using a partial least-squares projection to latent structures model. In NTR-ve lines, cytotoxicity correlated positively with logP, negatively with hydrogen bond acceptors (HA) and donors (HD) in the amide side chain, and positively with the reactivity of the less-reactive leaving group of the mustard function, likely reflecting toxicity due to DNA monoadducts. Potency and selectivity for NTR+ve lines was increased by logP and HD, decreased by HA, and was positively correlated with the leaving group efficiency of the more-reactive group, likely reflecting DNA crosslinking. NTR selectivity was greatest for asymmetric chloro/mesylate and bromo/mesylate mustards. Bystander effects in the MCL assay also correlated positively with logP and negatively with leaving group reactivity, presumably reflecting the transcellular diffusion/reaction properties of the activated metabolites. A total of 18 of 22 mustards showed equal or greater bystander efficiencies in MCLs than the aziridinylbenzamide CB 1954, which is currently in clinical trial for NTR-GDEPT. The dibromo and bromomesylate mustards were surprisingly well tolerated in mice. High MTD/IC50 (NTR+ve) ratios translated into curative activity of several compounds against NTR+ve tumors. A bromomesylate mustard showed superior activity against WiDr tumors grown from 1:9 mixtures of NTR+ve and NTR-ve cells, indicating a strong bystander effect in vivo.


Assuntos
Antineoplásicos Alquilantes/síntese química , Proteínas de Escherichia coli/genética , Compostos de Mostarda Nitrogenada/síntese química , Nitrorredutases/genética , Pró-Fármacos/síntese química , Animais , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacologia , Efeito Espectador , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática , Proteínas de Escherichia coli/metabolismo , Feminino , Terapia Genética , Humanos , Análise dos Mínimos Quadrados , Masculino , Camundongos , Camundongos Nus , Análise Multivariada , Compostos de Mostarda Nitrogenada/química , Compostos de Mostarda Nitrogenada/farmacologia , Nitrorredutases/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Relação Quantitativa Estrutura-Atividade , Transplante Heterólogo
18.
J Med Chem ; 60(13): 5834-5856, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28644035

RESUMO

A new series of nitro analogues of the duocarmycins was prepared and evaluated for hypoxia-selective anticancer activity. The compounds incorporate 13 different amine-containing side chains designed to bind in the minor groove of DNA while spanning a wide range of base strength from pKa 9.64 to 5.24. The most favorable in vitro properties were associated with strongly basic side chains, but the greatest in vivo antitumor activity was found for compounds containing a weakly basic morpholine. This applies to single-agent activity and for activity in combination with irradiation or chemotherapy (gemcitabine or docetaxel). In combination with a single dose of γ irradiation 50 at 42 µmol/kg eliminated detectable clonogens in some SiHa cervical carcinoma xenografts, and in combination with gemcitabine using a well-tolerated multidose schedule, the same compound caused regression of all treated A2780 ovarian tumor xenografts. In the latter experiment, three of seven animals receiving the combination treatment were completely tumor free at day 100.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Indóis/química , Indóis/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Ovário/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada , Ensaios de Seleção de Medicamentos Antitumorais , Duocarmicinas , Feminino , Humanos , Indóis/farmacologia , Camundongos , Camundongos Nus , Nitrocompostos/química , Nitrocompostos/farmacologia , Nitrocompostos/uso terapêutico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/radioterapia , Ovário/patologia , Ovário/efeitos da radiação , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Pirrolidinonas/uso terapêutico
19.
Front Pharmacol ; 8: 531, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848445

RESUMO

3-(3-Morpholinopropyl)-7,8-dihydro-6H-indeno[5,6-e][1,2,4]triazine 1,4-dioxide (SN30- 000), an analog of the well-studied bioreductive prodrug tirapazamine (TPZ), has improved activity against hypoxic cells in tumor xenografts. However, little is known about its biotransformation in normal tissues. Here, we evaluate implications of biotransformation of SN30000 for its toxicokinetics in NIH-III mice. The metabolite profile demonstrated reduction to the 1-N-oxide (M14), oxidation of the morpholine side-chain (predominantly to the alkanoic acid M18) and chromophore, and subsequent glucuronidation. Plasma pharmacokinetics of SN30000 and its reduced metabolites was unaffected by the presence of HT29 tumor xenografts, indicating extensive reduction in normal tissues. This bioreductive metabolism, as modeled by hepatic S9 preparations, was strongly inhibited by oxygen indicating that it proceeds via the one-electron (radical) intermediate previously implicated in induction of DNA double strand breaks and cytotoxicity by SN30000. Plasma pharmacokinetics of SN30000 and M14 (but not M18) corresponded closely to the timing of reversible acute clinical signs (reduced mobility) and marked hypothermia (rectal temperature drop of ∼8°C at nadir following the maximum tolerated dose). Similar acute toxicity was elicited by dosing with TPZ or M14, although M14 did not induce the kidney and lung histopathology caused by SN30000. M14 also lacked antiproliferative potency in hypoxic cell cultures. In addition M14 showed much slower redox cycling than SN30000 in oxic cultures. Thus a non-bioreductive mechanism, mediated through M14, appears to be responsible for the acute toxicity of SN30000 while late toxicities are consistent with DNA damage resulting from its one-electron reduction. A two-compartment pharmacokinetic model, in which clearance of SN30000 is determined by temperature-dependent bioreductive metabolism to M14, was shown to describe the non-linear PK of SN30000 in mice. This study demonstrates the importance of non-tumor bioreductive metabolism in the toxicology and pharmacokinetics of benzotriazine di-oxides designed to target tumor hypoxia.

20.
Cancer Res ; 63(18): 5970-7, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-14522924

RESUMO

In common with other bioreductive drugs, metabolic reduction is required for activation of the benzotriazine-di-N-oxide tirapazamine (TPZ) in hypoxic regions of tumors. This same metabolism also consumes the drug as it diffuses, impeding its penetration into hypoxic tissue. In this study, we develop a pharmacokinetic (PK)/pharmacodynamic (PD) model for TPZ that explicitly includes its diffusion characteristics as measured in multicellular layer (MCL) cultures of HT29 colon carcinoma cells. The kinetics of TPZ metabolism to its mono-N-oxide derivative SR 4317, determined by high-performance liquid chromatography using anoxic HT29 single cell suspensions, demonstrated both a first order and saturable (K(m) = 3.6 micro M) component. Cell killing, assessed by clonogenic assay under the same conditions, demonstrated an approximately quadratic concentration dependence and linear time dependence. TPZ transport through MCLs, determined under hyperoxic conditions (95% O(2)) to suppress reductive metabolism, provided a concentration-independent diffusion coefficient of 0.40 x 10(-6) cm(2)s(-1). Under anoxia, this transport was strongly suppressed and was well predicted by the single cell metabolism parameters (scaled to the cell density in MCLs). These PK (transport) and PD (cytotoxicity) parameters were used to calculate cell killing as a function of distance in anoxic HT29 MCLs after the addition of TPZ to both sides of the MCL. The predicted average cell kill was in good agreement with measured values, which showed much less killing than for single cell suspensions under the same conditions. The success of this PK/PD model in predicting response in MCL shows that inefficient transport, rather than changes in intrinsic sensitivity, is responsible for TPZ resistance in these three-dimensional cell cultures and suggests that optimization of transport properties is a high priority in developing second-generation TPZ analogues.


Assuntos
Antineoplásicos/farmacologia , Triazinas/farmacologia , Antineoplásicos/farmacocinética , Transporte Biológico , Cromatografia Líquida de Alta Pressão , Resistencia a Medicamentos Antineoplásicos , Células HT29 , Humanos , Modelos Biológicos , Esferoides Celulares , Tirapazamina , Triazinas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA